IAleksandrovna45
?>

Длины двух сторон треугольника равны 13 и 14. сколько различных целых значений может принимать площадь этого треугольника? , с ! 1) 1 2) 31 3) бесконечное множество 4) 90 5) 91

Геометрия

Ответы

shhelina

Длины двух сторон треугольника равны 13 и 14. Сколько различных целых значений может принимать площадь этого треугольника?


решение в приложении


Длины двух сторон треугольника равны 13 и 14. сколько различных целых значений может принимать площа
elegiy
Рисунок без буквенных обозначений (кроме C,O,M), обозначишь, если нужно как угодно, хотя всё понятно и так.
Для удобства и быстроты всей писанины введём буквенные обозначения a-сторона основания, l- апофема, h- высота основания. Эти три величины потребуются для всего вычисления.
МО=3, как катет, лежащий против угла в 30°
Для Δ-ка, лежащего в основании медианы, биссектрисы, высоты совпадают, а точка их пересечения О- является центром основания.
Далее вспоминаем свойство медиан Δ-ка:
Медианы треугольника пересекаются в одной точке, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Поэтому l=3MO=3\cdot3=9
Теперь находим a:
a^2=( \frac{a}{2})^2+9^2\\ \\a^2= \frac{a^2}{4}+81\\ \\4a^2=a^2+324\\
3a^2=324\\a^2=108\\a=6 \sqrt{3}

S_{OCH}= \frac{ah}{2}= \frac{6 \sqrt{3}\cdot9}{2}=27 \sqrt{3}\\ \\ S_{6OK.}=3 \frac{al}{2}=3 \frac{6 \sqrt{3}\cdot6}{2}=54 \sqrt{3}

S_{n.}= S_{OCH}+ S_{6OK.}=27 \sqrt{3}+54\sqrt{3}=81 \sqrt{3}\ cm^2

...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
Вправильной треугольной пирамиде апофема равна 6 см, наклонена к плоскости основания под углом 60*.
Fateevsa9

Пусть P - произвольная точка

PK, PL, PM - перпендикуляры к сторонам треугольника ABC

 

По теореме Пифагора для треугольников PAK и PBK

PK^2 =PA^2 -AK^2 =PB^2 -BK^2 <=> PA^2 -PB^2 =AK^2 -BK^2

(Доказали, что разность квадратов наклонных равна разности квадратов их проекций.)

PB^2 -PC^2 =BL^2 -CL^2

PC^2 -PA^2 =CM^2 -AM^2

Сложим:

AK^2 -BK^2 +BL^2 -CL^2 +CM^2 -AM^2 =0 <=>

AK^2 +BL^2 +CM^2 =CL^2 +BK^2 +AM^2

Если перпендикуляры к сторонам пересекаются в одной точке, то выполняется это равенство.

(Обратное док-во: разность квадратов наклонных для двух пересекающихся перпендикуляров подставляем в доказанное равенство - получаем разность квадратов наклонных для третьего отрезка - тогда он также является перпендикуляром.)

 

Проверим данные из условия

AK=BK=6, BL=AM=1

CM= {9, 11}

CL= {7, 9}

CM^2 =CL^2 в одном случае:

точка M на стороне, точка L на продолжении стороны.


В треугольнике ABC AB=12, AC=10, BC=8. Точки K, L и M лежат на прямых AB, BC и CA соответственно так

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Длины двух сторон треугольника равны 13 и 14. сколько различных целых значений может принимать площадь этого треугольника? , с ! 1) 1 2) 31 3) бесконечное множество 4) 90 5) 91
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

turoverova5
zaretskaya37
silviya
Владимир1524
Тресков946
droshchupkin
eurostom
vadim1140
lalaland2744
Валиахметова
schernov
Komarovsergeysk
Александр Джабраиловна1967
с геометрией 6 и 8 с решением
Vetroff-11
VASILEVNA