Расстояние от точки М до плоскости треугольника - это длина перпендикуляра, основание которого - центр окружности вписанной в прямоугольный треугольник. т.к. раз точка равноудалена от сторон треугольника, то наклонные ММ₁=ММ₂, значит, равны и их проекции, т.е. от сторон треугольника АВС равноудалена и точка О, значит, точка О-это центр вписанной окружности, по свойству касательной ОМ₁⊥ВС, радиус легко найти из соотношения r=(a+b-c)/2, стороны треугольника ищем по теореме Пифагора, для этого приходится решать квадратное уравнение, я его решил по Виету, хотя можно было и через дискриминант ,кому как удобнее, а затем из прямоугольного треугольника МОМ₁ нашел искомое расстояние, еще раз применив теорему Пифагора. Более детально во вложении.
ответ 5 см.
Расстояние от точки М до плоскости треугольника - это длина перпендикуляра, основание которого - центр окружности вписанной в прямоугольный треугольник. т.к. раз точка равноудалена от сторон треугольника, то наклонные ММ₁=ММ₂, значит, равны и их проекции, т.е. от сторон треугольника АВС равноудалена и точка О, значит, точка О-это центр вписанной окружности, по свойству касательной ОМ₁⊥ВС, радиус легко найти из соотношения r=(a+b-c)/2, стороны треугольника ищем по теореме Пифагора, для этого приходится решать квадратное уравнение, я его решил по Виету, хотя можно было и через дискриминант ,кому как удобнее, а затем из прямоугольного треугольника МОМ₁ нашел искомое расстояние, еще раз применив теорему Пифагора. Более детально во вложении.
ответ 5 см.
Поделитесь своими знаниями, ответьте на вопрос:
Отрезок do — перпендикуляр к плоскости угла abc, равного 120°, причем точка о лежит внутри угла, а точка d равноудалена от его сторон. пусть da и dc — расстояния от точки d до сторон угла. докажите перпендикулярность плоскостей dob и dac. нужно разъяснение
Докажим,что BD_|_AC
BD пересекается с АС в точке К
AD=CD,AD_|_AB U CD_|_CB,BD-общая
Треугольники ABD и CBD прямоугольные и равны⇒<ABD=<CBD=120:2=60
AB=CB⇒Треугольник АВС-равнобедренный,а значит BD-биссектриса ,медиана и высота
AD=CD⇒Треугольник АDС-равнобедренный,а значит BD-биссектриса ,медиана и высота
BD_|_AC⇒(DOB)_|_DAC
Если прямые ,принадлежашие плоскостям перпендикулярны,то и плоскости перпендикулярны.