Пирамидой, вписанной в конус, называется такая пирамида, основание которой есть многоугольник, вписанный в окружность основания конуса, а вершиной является вершина конуса. Боковые ребра пирамиды, вписанной в конус, являются образующими конуса.
Высота пирамиды = высоте конуса. Высота конуса здесь равна высоте равностороннего треугольника со сторонами, равными диаметру основания конуса.
Основание пирамиды - вписанный треугольник. А поскольку этот треугольник - прямоугольный, то его гипотенуза является диаметром основания конуса.
D=√(12²+16²)=20 см
Диаметр конуса = стороне его осевого сечения, т.к. оно - правильный треугольник.
Формула высоты равностороннего треугольника
h=(a√3):2
h=(20√3):2=10√3 см
задача решается очень элегантным дополнительным построение
пусть трапеция АВСD. АС = 3; ВD = 5; AD и ВС - основания.
Через точку D проводим прямую II АС до пересечения с продолжением AD. Точка пересечения - E. Площадь треугольника ACE равна площади трапеции (у них общая высота и одинаковая средняя линяя, поскольку АЕ = AD + BC.
Отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей О. Собственно, из подобия АОD и BOC следует, что медианы из точки О в обоих треугольниках составляют одинаковые углы с основаниями, то есть это - одна прямая, соединяющая середины оснований. Треугольник АСЕ Тоже подобен АОD и BOC, и поэтому медиана в нем II этому отрезку. А значит, она ему равна :).
Итак, Площадь треугольника ACE равна площади трапеции, и в АСЕ известны 2 стороны 3 и 5 и медиана 2. Продолжим медиану СМ за её основание М на 2 и соединим полученную точку Р с A и Е. Получим параллелограмм ACEP. Ясно из свойств параллелограма что площадь АСЕ = площадь CPE.
СРЕ - треугольник с заданными сторонами РЕ = 5, СЕ = 3, СР = 2*2 = 4.
Найти его площадь в общем случае можно по формуле Герона, но тут все просто - треугольник СРЕ прямоугольный (это просто следствие того что 9 + 16 = 25), и его площадь S = (1/2)*3*4 = 6.
Удивительно, ввел решение, и увидел, что задачу решили так же как и я : это приятно :)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите все углы параллерограмма если один их углов 35
180°-35°=145°
Противолежащие углы в пар-ме равны.
1 угол = 35°
2 угол = 145°
3 угол = 35°
4 угол = 145°.