laplena1982750
?>

Вуглах смежных с углами ромба проведены биссектрисы, доказать что при их пересечении образуется прямоугольник.

Геометрия

Ответы

Dmitrievich1871
Биссектрисы смежных углов перпендикулярны.
[Сумма смежных углов равна 180°; угол между биссектрисами смежных углов равен полусумме смежных углов, т.е. 90°.]
∠A1AO=∠A1BO=90°

Диагонали ромба пересекаются под прямым углом.
∠AOB=90°

Если у четырехугольника три угла прямые, то он является прямоугольником.
[Сумма углов четырехугольника равна 360°; 360°-90°·3=90°; четырехугольник, у которого противоположные углы равны, является параллелограммом; параллелограмм, у которого (хотя бы) один угол прямой, является прямоугольником.]
∠AA1B=90°

Аналогично другие углы четырехугольника, образованного пересечением биссектрис смежных углов ромба, прямые.
Вуглах смежных с углами ромба проведены биссектрисы, доказать что при их пересечении образуется прям
Tochkamail370

ответ:   Угол А=68°

Объяснение:

    Треугольник, вершинами которого являются основания высот какого либо треугольника, называется ортотреугольником.

а) В любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному.

б) Высоты остроугольного треугольника являются биссектрисами углов его ортотреугольника.

     Для решения   данной задачи достаточно применить второе из указанных свойств.

     Высоты ∆ АВС перпендикулярны его сторонам.

∠ВВ1 делит угол В1 на два по 66°:2=33°. ⇒ ∠С1В1А=∠ВВ1А-∠ВВ1С1=90°-33°=57°

Аналогично ∠В1С1А=90°-0,5∠А1С1В1=90°-70°:2=55°.

Сумма углов треугольника  180°⇒

∠А=180°-(АС1В1+АВ1С1)=180°-(57°+55°)=68°.  

Углы В и С вычисляются таким же образом:

∠В=57°, ∠С=55°

—————

Обратим внимание на то, что углы при вершинах  ∆ АВС равны разности между прямым углом и половиной угла ортотреугольника при основании высоты из вершины исходного треугольника..

Для угла А=90°- 0,5•угол А1=90°-22°=68°

Для угла В=90°-0,5•угол В1=90°-33°=57°

Для угла С=90°-0,5•угол С1=90°-35°=55°


В треугольнике ABC проведены высоты AA1, BB1, CC1. Чему может быть равен угол A треугольника ABC, ес
barekyan096140

Отрезок BC виден из точек С1 и B1 под прямым углом - точки B, C1, B1, C лежат на окружности c центром в середине BC.

B1BC1 =C1CB1

A1BC1H, A1CB1H - вписанные четырехугольники (т.к. противоположные углы прямые).

HA1C1 =HBC1, HA1B1=HCB1 => HA1C1=HA1B1

(т.е. высота AA1 треугольника ABC является биссектрисой угла A1 ортотреугольника A1B1C1)

∪B1C1 =2B1BC1 =A1 =44  

Если треугольник остроугольный, найдем BAC как угол между секущими:

BAC =∪BC/2 -∪B1C1/2 =90-22 =68

Если треугольник тупоугольный - рассмотрим △HBC - найдем BHC как угол между хордами:

BHC =∪BC/2 +∪B1C1/2 =90+22 =112  

---------------------------------

М - середина BC. B1MC1 =∪B1C1 (центральный угол) =A1, т.е. M лежит на описанной окружности △A1B1C1.

Аналогично для всех середин сторон △ABC и середин сторон △AHB, △BHC, △AHC (для этих треугольников △A1B1C1 является ортотреугольником).

Описанная окружность ортотреугольника называется окружностью девяти точек или окружностью Эйлера (основания высот, середины сторон и середины отрезков от ортоцентра до вершины лежат на одной окружности).


дам кучу, если решите ответьте и тут и тут: Получите 86 без учета лучшего В треугольнике ABC прове
дам кучу, если решите ответьте и тут и тут: Получите 86 без учета лучшего В треугольнике ABC прове

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вуглах смежных с углами ромба проведены биссектрисы, доказать что при их пересечении образуется прямоугольник.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Альберт Луиза1595
ivanandrieiev1984268
katdavidova91
gorod7
alex-kuzora4411
Nonstop788848
vasearu
lirene
textildlavas21
Николаев
yuklimochkina3
ribanina
сузанна_Людмила
multikbo3049
Rafigovich1267