ответ: (x-3/1)²+y²=(5/1)².
Объяснение:
Уравнение окружности с центром в точке О(a;b) и радиусом R имеет вид: (x-a)²+(y-b)²=R². Так как в нашем случае центр окружности находится на оси OX, то b=0 и уравнение окружности принимает вид: (x-a)²+y²=R². Подставляя в него координаты точек (8;0) и (0;4), получаем систему уравнений:
(8-a)²+0²=R²
(0-a)²+4²=R²,
или:
(8-a)²=R²
a²+16=R².
Приравнивая левые части, приходим к уравнению 64-16*a=16. Отсюда a=3 и R=5. Тогда уравнение окружности имеет вид: (x-3)²+y²=5², или (x-3/1)²+y²=(5/1)²
Поделитесь своими знаниями, ответьте на вопрос:
Дано: abc, a=5см, c=8см, b=60° знайдить b
b -?
По т косинусов:
b² =а²+с²-2ас·cos∠B=25+64-2·40·1/2=89-40=49
b=√49=7 cм