ответ короч
Объяснение:
Дано:
∆АВС - прямокутний (∟В = 90°).
∆А1В1С1 - прямокутний (∟В1 = 90°).
ВС = B1C1; BN - бісектриса ∟АВС;
B1N1 - бісектриса ∆А1В1С1.
Довести: ∆АВС = ∆А1В1С1.
Доведения:
За умовою ∟ABC = 90° i BN - бісектриса ∟ABC.
За означенням бкектриси кута маємо: ∟ABN = ∟NBC = 90° : 2 = 45°.
Аналогічно B1N1 - бісектриса ∟А1В1С1, тоді ∟A1B1N1 = ∟N1B1C1 = 45°.
Розглянемо ∆NBC i ∆N1B1C1:
1) BN = B1N1 (за умовою);
2) ВС = В1С1 (за умовою);
3) ∟NBC = ∟N1B1C1 = 45°.
За I ознакою piвностi трикутників маємо:
∆NВС = ∆N1B1C1. Звідси ∟C = ∟С1.
Розглянемо ∆АВС i ∆А1В1С1:
1) ∟ABC = ∟А1В1С1 = 90°;
2) ВС = B1C1;
3) ∟C = ∟С1.
За ознакою piвностi прямокутних трикутників маємо: ∆АВС = ∆А1В1С1.
Доведено.
ответ: 6,6
Вариант решения.
Формула площади треугольника S=a•h/2 => h=2S:a.=>
Чем больше сторона треугольника, тем меньше высота, которая к ней проведена.
Пусть высота, проведенная к стороне 20, делит ее на отрезки х и 20-х, и образует два прямоугольных треугольника, гипотенузы которых - другие стороны исходного треугольника.
Выразим квадрат высоты из 1-го треугольника по т.Пифагора:
h²= 11²-х²
Аналогично – то же из второго треугольника:
h²=13²-(20-x)²
Приравняем эти значения
11²-х²=13²-(20-x)² Решив уравнение, получим
40х=352
х=8,8
Из меньшего треугольника по т.Пифагора
h=√(121-77,4)= 6,6 ( ед. длины)
Поделитесь своими знаниями, ответьте на вопрос:
Периметр равнобренного треугольника равен 58см.основание больше боковой стороны на 7см.найдите боковую сторону