По теореме о трех перпендикулярах отрезок ОВ - проекция наклонной АВ, перпендикулярной прямой ВС (катеты). Следовательно, двугранный угол АВСО измеряется линейным углом АВО по определению и равен 45° (дано). Треугольник АВО прямоугольный и равнобедренный. Катеты АО=ОВ=2см, а гипотенуза АВ=2√2 см. В прямоугольном треугольнике АВС по Пифагору АС=√(АВ² +ВС²) = √(8+4) = 2√3см. В прямоугольном треугольнике АОС синус угла АСО (искомый угол, так как это угол между наклонной АС и плоскостью α по определению) равен отношению АО/АС = 2/(2√3) = √3/3. По таблице - это угол, равный 35,2°.
ответ: 35,2°.
По теореме о трех перпендикулярах отрезок ОВ - проекция наклонной АВ, перпендикулярной прямой ВС (катеты). Следовательно, двугранный угол АВСО измеряется линейным углом АВО по определению и равен 45° (дано). Треугольник АВО прямоугольный и равнобедренный. Катеты АО=ОВ=2см, а гипотенуза АВ=2√2 см. В прямоугольном треугольнике АВС по Пифагору АС=√(АВ² +ВС²) = √(8+4) = 2√3см. В прямоугольном треугольнике АОС синус угла АСО (искомый угол, так как это угол между наклонной АС и плоскостью α по определению) равен отношению АО/АС = 2/(2√3) = √3/3. По таблице - это угол, равный 35,2°.
ответ: 35,2°.
Поделитесь своими знаниями, ответьте на вопрос:
Вромбе abcd проведена диагональ ac. определите вид треугольника abc и найдите его углы, если угол adc=130 градусов
У ромба все стороны равны : AB = BC = CD = AD
У ромба противоположные углы равны :
∠ABC = ∠ADC = 130°
ΔABC - равнобедренный (AB = BC) ⇒
∠BAC = ∠BCA как углы при основании равнобедренного треугольника.
Сумма углов треугольника равна 180°.
∠BAC + ∠BCA + ∠ABC = 180°
2∠BAC + 130° = 180°
2∠BAC = 50° ⇒ ∠BAC = 25°
ответ : треугольник ABC равнобедренный,
∠ABC = 130°, ∠BAC = ∠BCA = 25°