1)Сначала рассмотрим треугольники АВО и СОМ
АО = ОС - по условию
ВО = ОМ - по условию
угол ВОА = угол МОС - вертикальные, следовательно треугольники равны по первому признаку равенства треугольников, следовательно АВ = СМ и угол АВО = углу СМО
2)Затем рассмотрим треугольники ВОС и АОМ
ВО = ОМ - по условию
ОС = ОА - поу словию
угол ВОС = углу АОМ - вертикальные, следовательно треугольники равны по первому признаку равенства треугольников, следовательно ВС = АМ и угол АМО = угол ОВС
3) угол АВС = угол АВО + угол ОВС
угол АМС = угол АМО + угол ОМС
угол АМО = угол ОВС
угол АВО = углу СМО, следовательно угол АВС = углу АМС
4)Рассмотрим треугольники АВС и АМС
АВ = СМ - по доказонному (1)
ВС = АМ - по доказонному (2)
угол АВС = углу АМС - по доказонному (3), следовательно треугольники равны по первому признаку равенства треугольников
6 + 8√2 см
Объяснение:
Трапеция равнобокая => ее боковые стороны равны. Опустим из концов меньшего основания перпендикуляры на большее основание и рассмотрим любой из образовавшихся треугольников (они равны). Это будет прямоугольный треугольник с двумя углами по 45°, гипотенуза которого равна 8 см. Либо через косинус 45°, либо через теорему Пифагора высчитываем, что катеты прямоугольника равны 4√2 см.
Теперь рассмотрим все большее основание. Отрезок между перпендикулярами равен меньшему основанию, т.е. 6 см, а два оставшихся отрезка равны по 4√2 см. Значит, большее основание = 6 см + 2* 4√2 см = 6 + 8√2 см
Поделитесь своими знаниями, ответьте на вопрос:
Докажите что медиана любого треугольника делит его на два равновеликих. желательно с рисунком. заранее
Докажите, что медиана треугольника делит его на два треугольника, площади которых равны между собой.
Решение:
Проведем высоту из точки B. Высота BE - общая высота для треугольников BAD и BCD.
SBAD=BE*AD/2
SBCD=BE*DC/2
AD=DC (по определению медианы)
SBAD/SBCD=(BE*AD/2)/(BE*DC/2)=BE*AD/BE*DC=AD/DC=1
SBAD=SBCD
Что и требовалось доказать (ч.т.д.)