Находим градусные меры дуг окружности:
360⁰:20=18⁰
бОльшая дуга=18*11=198⁰
меньшая дуга=18*9=162⁰
Известно, что вписанный угол окружности равен половине градусной меры дуги, на которую он опирается. Используя это свойство находим углы ΔМКР:
Во первых сразу можно сказать, что угол МКР- прямой, как опирающийся на диаметр:
угол МКР=180:2=90⁰
Угол МРК опирается на меньшую из двух дуг, угол МРК=162:2=81⁰
Дуга РК=180-162=18⁰, угол КМР=18:2=9⁰
Или можно найти угол КМР как 180-(90+81)=9⁰
ответ: угол МКР=90⁰
угол МРК=81⁰
угол КМР=9⁰
Ну и, как "Лучшее решение" не забывай отмечать, ОК?!... ;)
1) ∠ABC=∠ABD, BC=BD
△ABC=△ABD (по двум сторонам и углу между ними, AB - общая сторона)
2) ∠NMK=∠PKM, NM=PK
△NMK=△PKM (по двум сторонам и углу между ними, MK - общая)
3) RO=TO, OS=OP
∠ROS=∠TOP (вертикальные углы)
△ROS=△TOP (по двум сторонам и углу между ними)
4) ∠E=∠N, EO=NO
∠EOF=∠NOM (вертикальные углы)
△EOF=△NOM (по стороне и прилежащим к ней углам)
5) ∠Q=∠F, QM=PM
∠QMK=∠PMF (вертикальные углы)
△QMK=△PMF (по стороне и прилежащим к ней углам)
6) ∠BAC=∠DCA, ∠ACB=∠CAD
△BAC=△DCA (по стороне и прилежащим к ней углам, AC - общая)
∠B=∠D, BA=DC (соответствующие элементы равных треугольников)
∠BAC-∠CAD=∠DCA-∠ACB <=> ∠BAO=∠DCO
△BAO=△DCO (по стороне и прилежащим к ней углам)
7) EM=FN, ∠EMN=∠FNM
△EMN=△FNM (по двум сторонам и углу между ними, MN - общая)
∠E=∠F, ∠MNE=∠NMF (соответствующие элементы равных треугольников)
∠EMN-∠NMF=∠FNM-∠MNE <=> ∠EMP=∠FNP
△EMP=△FNP (по стороне и прилежащим к ней углам)
8) AB=AD, BC=DC
△ABC=△ADC (по трем сторонам, AC - общая
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Постройте сечение тетраэдра плоскостью, проходящей через точки с и к параллельно прямой а.