Вравнобедренном треугольнике точка е - середина основания ас а точка к делит сторону вс в отношении 2: 5 считая от вершины с. найдите отношение в котором прямая ве делит отрезок ак
В равнобедренном треугольнике АВС точка Е-середина основания АС,а точка К делит сторону ВС в отношении 2:5,считая от вершины С.Найдите отношение,в котором прямая ВЕ делит отрезок АК.
izykova22
20.10.2021
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
askorikova
20.10.2021
Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике точка е - середина основания ас а точка к делит сторону вс в отношении 2: 5 считая от вершины с. найдите отношение в котором прямая ве делит отрезок ак