Найдите координаты точек , которые симметричны точке А(4;5)
г) относительно точки S(5;1) ; д) относительно прямой у=3
Объяснение:
г) " Симметрией относительно точки или центральной симметрией относительно точки О называется преобразование плоскости , переводящее точку А в точку А1, что О - середина отрезка АА1 "
Поэтому , точка S -середина АА1 , где А1(х;у)-симметричная точка.
По формулам х=(х₁+х₂):2 ,у=(у₁+у₂):2 , где (х₁;у₁), (х₂;у ₂) -координаты концов отрезка , (х;у ), -координаты середины , получаем
5=(4+х₂):2 , 1=(5+у₂):2 ;
10=4+х₂ , 2=5+у₂ ;
х₂=6 , у₂=-3 ;
А2(6; -3).
д) у(А)=5 , значит расстояние от точки А до прямой у=3 равно 5-3=2 .
Поэтому расстояние от прямой до точки А1 должно быть тоже 2. Абсцисса ,симметричной точки, сохраняется. Значит координаты А1(4;2)
Пусть A' – середина дуги BC. Так как OA' || IA2, прямые OI и A'A2 пересекаются в точке K – центре гомотетии описанной и вписанной окружностей (см. рис.). Докажем, что K – искомый радикальный центр.
Первый Так как инверсия с центром A' и радиусом A'B меняет местами прямую BC и описанную окружность Ω треугольника ABC, точка A1 переходит в A, а A2 – в точку A'' пересечения прямой A'A2 с описанной окружностью. Следовательно, точки A, A1, A2 и A'' лежат на одной окружности.
Степень точки K относительно описанной окружности треугольника AA1A2 равна – KA2·KA'' = – r/R AA'·KA'' = r/R s(K), где s(K) – степень точки K относительно Ω.
Очевидно, степени точки K относительно описанных окружностей треугольников BB1B2 и CC1C2 будут такими же, то есть K – радикальный центр трёх окружностей.
Второй Пусть A', B', C' – середины дуг BC, CA, AB. Тогда треугольник A'B'C' переводится в A2B2C2 гомотетией с коэффициентом r/R и центром K, то есть KA2 : A'A2 = KB2 : B'B2 = KC2 : C'C2 = k : 1. Для точек прямой A'A2 разность степеней относительно описанной окружности треугольника AA1A2 и вписанной окружности треугольника ABC является линейной функцией. В точке A2 эта функция равна нулю,
а в точке A' – r², поскольку A'A1·A'A = A'B² = A'I² (первое равенсто следует из подобия треугольников A'A1B и A'BA, а второе – из леммы о трезубце – см. задачу 53119). Значит, в точке K эта разность равна – kr². Другие аналогичные разности в точке K также равны – kr², откуда и следует требуемое
Поделитесь своими знаниями, ответьте на вопрос:
На одній із граней двогранного кута позначено точку м з якої проведено перпендикуляр ма до ребра кута і перпендикуляр мв до другої грані. обчисліть градусну міру цього кута якщо ма = 8 мв = 4см
Угол равен 30°.
Объяснение:
Определение: "Двугранный угол, образованный полуплоскостями (α и β) измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру". Следовательно, данный нам двугранный угол равен градусной мере угла ВАМ, так как плоскость ВАМ перпендикулярна ребру СD данного двугранного угла по теореме о трех перпендикулярах (АВ - проекция наклонной МА на плоскость α, МА перпендикулярна прямой CD => АВ⊥СD).
В прямоугольном треугольнике МАВ (∠В = 90°) катет ВМ, лежащий против ∠ВАМ, равен половине гипотенузы АМ (дано). Следовательно, ∠ВАМ = 30° (свойство).