Чтобы решить данную задачу - определяем центр окружности:
уравнение окружности начинающейся в центре координат: x^2+y^2=R^2
определяем серединную точку окружности:
если y=0, то x^2=16 x=3 и x=-5 -> абсцисса центра окружности =-1 (т.е. смещена), тк R=4
Аналогично находим ординату точки центра y0=+2 (рассчеты проводим аналогчино предыдщему пункту)
Центр окружности имеет координаты: (-1;2)
Прямая параллельная оси абсцисс не меняется по оси на всей свой длине -> y=c . определяем с, исходя из условия прохождения прямой через центр окружности -> с=2 -> уравнение прямой y=2
сделаем построение по условию
дополнительно
параллельный перенос прямой (BD) в прямую (B1D1)
искомый угол <AB1D1 в треугольнике ∆AB1D1
по теореме Пифагора
AB1=√(a^2+(3a)^2) =a√(1+9)= a√10
B1D1=√(a^2+(2a)^2) =a√(1+4)= a√5
AD1=√((2a)^2+(3a)^2) =a√(4+9)= a√13
по теореме косинусов
AD1^2 = AB1^2+B1D1^2 - 2*AB1*B1D1 * cos<AB1D1
(a√13)^2=(a√10)^2 + (a√5)^2 - 2* a√10* a√5 * cos<AB1D1
13a^2=10a^2 + 5a^2 -10√2a^2 * cos<AB1D1
cos<AB1D1 = 13a^2-(10a^2 + 5a^2) / -10√2a^2 = -2a^2 / -10√2a^2 = √2/10
<AB1D1 = arccos (√2/10)
ответ угол между прямыми BD AB1 arccos (√2/10)
Поделитесь своими знаниями, ответьте на вопрос:
1) прямоугольная трапеция с большим основанием 8 см и боковыми сторонами 3 см и 5 см вращается вокруг большего основания. найдите объем тела вращения. 2) прямоугольный треугольник с катетом а и прилежащим острым углом альфа вращается вокруг гипотенузы. найдите объем тела вращения.
1.Объём получившегося тела вращения - сумма объёмов цилиндра с и конуса с общим основанием с радиусом, равны высоте трапеции.
Высота прямоугольной трапеции равна меньшей боковой стороне.
ВН=3 ⇒ r=3
По т. Пифагора высота конуса АН= √(BA²-BH²)=4
Высота цилиндра DH =8-4=4
Объём цилиндра равен произведению площади основания на высоту
Vц=π3²•4=36π см³
Объём конуса равен 1/3 произведения площади основания на высоту.
Vk=π3²•4/3=12π см³
V=36π+12π=48π см³ (см. приложение)
------------------
2. Пусть данный треугольник АВС, угол С=90°, угол САВ=α, катет АС=а.
Тело вращения - фигура из двух конусов с общим основанием, радиусом r которого является высота ∆ АВС, проведенная из С к гипотенузе АВ. Высота СН=r=а•sinα
Высота h1 большего конуса - больший из отрезков, на которые основание высоты делит гипотенузу.
Высота h2 меньшего конуса - меньший из отрезков, на которые высота СН делит гипотенузу.
Объём тела вращения прямоугольного треугольника -сумма объёмов получившихся конусов.
V=V1+V2
r= a•sin α
V1=π•r²AH/3
V2= π•r²•BH/3
V=π•r²AH/3+ π•r²•BH/3
V=π•r²(AH+BH)/3;
AH+BH=AB
V=π•r²•AB/3
AB=AC/cosα=a/cosα
V=π•(a•sin α)²•(a/cosα):3=a³•sin²α/3cosα