Прямая MN║AC, значит ΔMBN подобен ΔABC Из подобия треугольников следует, что их сходственные стороны пропорциональны. Имеем: MN ÷ AC = BN ÷ BC пусть BN = x, тогда BC = x + 22 15 ÷ 25 = x ÷ x + 22, отсюда получаем 15 ( x + 22 ) = 25 x 15x + 330 = 25x 10x = 330 x = 33
Obukhov-Buriko
25.06.2020
Смотрите, всё довольно просто :) Объясню по моему чертежу. Мы рисуем отрезок АВ. Находим середину отрезка( для простоты и удобства, советую взять отрезок 4 см. Соответственно, 2 см и будет середина). У меня середина отрезка помечена зелёным цветом. Затем, ставим, где-нибудь рядом, точку М ( она красного цвета). Берём линейку, соединяем линейкой точку М и середину отрезка. Слабо проводим линию, чтобы она была немного дальше от середины. Отмеряем расстояние от точки М до середины отрезка. И отмечаем новую точку на этом расстоянии, от середины отрезка. Допустим F. Она и будет симметрична точке М
Nikolaevich_Vladimirovich1509
25.06.2020
АВСДЕФ - шестиугольник, АВ=10, ВС=СД=ДЕ=ЕФ=АФ. В тр-ке ВОК=ВО=D/2=5√2, ВК=ВК/2=5, sin(ВОК)=ВК/ВО=5/5√2=√2/2. ∠ВОК=45°, ∠АОВ=90°. ∠ОАВ=∠ОВА=45°. В оставшейся части окружности расположено пять равных тр-ков, градусная мера центрального угла каждого из них равна: ∠ВОС=(360-90)/5=54°. ∠ОВС=(180-54)/2=63°. Градусная мера угла шестиугольника, образованного двумя равными треугольниками, равна сумме углов при основании одного из них. ∠ВСД=63+63=126°. В шестиугольнике ∠С=∠Д=∠Е=∠Ф=126° - это ответ. ∠А=∠В=∠ОВА+∠ОВС=45+63=108° - это ответ.
Из подобия треугольников следует, что их сходственные стороны пропорциональны.
Имеем: MN ÷ AC = BN ÷ BC
пусть BN = x, тогда BC = x + 22
15 ÷ 25 = x ÷ x + 22, отсюда получаем
15 ( x + 22 ) = 25 x
15x + 330 = 25x
10x = 330
x = 33