Высота правильной треугольной пирамиды равна 20 см. боковое ребро наклонено к плоскости основания под углом 60°. вычислите длину: а) бокового ребра; б) окружности, описанной около основания пирамиды.
По условию Δ равнобедренный. две его стороны обозначим а, угол между ними =180°-30° *2=120° SΔ=(1/2)*a*a*sin 120°, SΔ=(1/2)*a² *(√3/2) 64√3=(1/4)a²√3, a²=256, a=16 основание Δ обозначим с. рассмотрим прямоугольный Δ, образованный высотой треугольника, боковой стороной и половиной основания. cos 30°=(c/2)/a √3/2=(c/2)/16, √3/2=c/32, c=16√3 ответ: стороны треугольника 16 см, 16см, 16√3 см
рассмотрим прямоугольный Δ, образованный высотой треугольника h, боковой стороной а и половиной основания с/2. пусть h=х см, тогда а=2х см(катет против угла 30 в 2 раза меньше гипотенузы) по т. Пифагора: (2х)²=(с/2)²+х². 4х²=с²/4+х², с²/4=3х². с²=12х², с=2х√3 SΔ=(1/2)*c*h 64√3=(1/2)*2x√3*x 64√3=x² √3, x²=64, x=8, => h=8 см, а=2*8=16 см, с=2*8*√3=16√3 см ответ: 16,16 и 16√3
irinaastapova2011
16.09.2022
Vпирмамиды= (1/3)*Sосн*Н. диагонали ромба в точке пересечения делятся пополам и перпендикулярны. Δ, образованный половинами диагоналей и стороной ромба: катеты равны 3 см (6/2=3) и 4 см (8/2=4). сторона ромба- гипотенуза =5 см (АВ²=3²+4², АВ²=25. АВ =5) Δ, образованный высотой пирамиды (катет), половиной диагонали (катет) = 3см(в условии сказано, что меньшее ребро), и меньшим ребром- гипотенуза=5см. по т. Пифагора: 5²=3²+Н², Н²=25-9, Н=4см Sосн=(1/2)*d₁*d₂/ d₁ и d₂ -диагонали ромба V=(1/3)*(1/2)*6*8*5 V=40cм³
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Высота правильной треугольной пирамиды равна 20 см. боковое ребро наклонено к плоскости основания под углом 60°. вычислите длину: а) бокового ребра; б) окружности, описанной около основания пирамиды.