На этих лучах по другую сторону от прямой АВ отложим отрезки КС₁ = СК и HD₁ = DH.
ABC₁D₁ - искомая трапеция.
2) C - центр симметрии, значит эта вершина отобразится на себя.
Из вершин А, В и D проведем лучи АС, ВС и DC. На них по другу сторону от точки С отложим отрезки
CA₁ = AC, CB₁ = BC и CD₁ = DC.
А₁B₁CD₁ - искомая трапеция.
len22
02.05.2021
Т.к. ac=a1c1, и bm, b1m1 - медианы, то am=cm=a1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - bm=b1m1 по условию; - am=a1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними: - bm=b1m1 по условию; - сm=c1m1 как было показано выше; - углы bmc и b1m1c1 равны как доказано выше. У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
Tatyanaaarzieva72
02.05.2021
Сделаем доп построения: проедем высоту ВЕ из вершины В. В нашей трапеции образовалось два треугольника: АВЕ и CDH (CH - высота из условия задачи, сами мы ввели только вершину Н для удобства); рассмотрим эти два треугольника: угол А=углу D, угол Е= углу Н=90 (т.к. ВЕ и СН - высоты) => угол АВЕ=углу DCH (сумма углов в треугольнике равна 180 градусов) => по двум углам и стороне между ними рассматриваемые треугольники равны => AE=DH=8; Чтобы найти EH, нужно из АН вычесть DH, т.е. ЕН=15-8=7. РАссмотрим чет-ник ВСНЕ: в нем ВСII ЕН (т.к. они части осноания трапеции),ВС=ЕН; все углы в нем по 90 градусов => т.о. ВС=ЕН=7 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Построить фигуру, симметричную данной трапеции 1)относительно основания ав 2)относительно вершины с
При осевой и центральной симметрии трапеция отображается в трапецию.
1) АВ - ось симметрии, значит отрезок АВ отобразится на себя.
Из точек С и D проведем лучи СК⊥АВ и DH⊥AB.
На этих лучах по другую сторону от прямой АВ отложим отрезки КС₁ = СК и HD₁ = DH.
ABC₁D₁ - искомая трапеция.
2) C - центр симметрии, значит эта вершина отобразится на себя.
Из вершин А, В и D проведем лучи АС, ВС и DC. На них по другу сторону от точки С отложим отрезки
CA₁ = AC, CB₁ = BC и CD₁ = DC.
А₁B₁CD₁ - искомая трапеция.