Александр Елена1290
?>

А1. в прямоугольнике abcd ав = 24 см, ас = 25 см. найдите площадь прямоугольника. а2. найдите площадь прямоугольного треугольника, если гипотенуза его равна 40 см, а острый угол равен 60о. а3. найдите площадь ромба, если его диагонали равны 14 и 6 см. а4. найдите площадь равнобедренной трапеции, у которой высота равна 16 см, а диагонали взаимно перпендикулярны. в1. середины оснований трапеции соединены отрезком. докажите, что полученные две трапеции равновелики.

Геометрия

Ответы

turoverova5
А1
т.к АB = 24, а AC =25 , То S=ab
S= AB*AC=25*24°600см^2
A2
ТК как в прямоугольном треугольник BAC угол A=90 градусов , а угол С=60 градусов , то угол В равен угол А-угол В
В=90-60=30градусов
катет лежащий против угла 30 градусов равен половине гипотенузы , следовательно
AC= 1/2BC
AC=2:40=20
по теореме Пифагора находим второй катет
bc^2= ab^2+ac^2
ab^2=bc^2-ac^2
ab^2=1600 -400=1200
ab=√1200=20√3
S=1/2ab=1/2 20√3*20=200√3( не уверен)
(извини только два смогу пока-что , напиши в комментах через 2 часа ) я потом решу
Владимирович111
Для того, чтобы определить географические координаты точки, возьмите карту с обозначением меридианов и параллелей. Учтите, чем больше будет частота этих линий и подробнее карта, тем точнее вам удастся определить широту и долготу, из которых состоят любые координаты.
2 Чтобы найти широту, используйте горизонтальные линии, начерченные на карте – параллели. Определите, на какой параллели находится ваша точка, и найдите ее значение в градусах. Около каждой горизонтальной параллели есть обозначение в градусах (слева и справа). Если точка расположена прямо на ней, смело делайте вывод о том, что ее широта равна этому значению.
3 Если же выбранное место лежит между двумя параллелями, указанными на карте, определите широту ближайшей к нему параллели и прибавьте к ней длину дуги в градусах до точки. Длину дуги посчитайте при транспортира или примерно, на глаз. Например, если точка посередине между параллелями 30º и 35º, то ее широта будет равна 32,5º. Поставьте обозначение N, если точка расположена над экватором (северная широта) и обозначение S, если она находится под экватором (южная широта).
4 Определить долготу вам меридианы – вертикальные линии на карте. Найдите меридиан, ближе всего расположенный на карте к вашей точке и посмотрите его координаты, указанные сверху и снизу (в градусах). Измерьте с транспортира или прикиньте на глаз длину дуги между этим меридианом и выбранным местом. Прибавьте полученное расстояние в градусах к найденному значению долготы и получите долготу искомой точки.
machkura

Сделаем рисунок и обозначим вершины пирамиды АВСА1В1С1. Ребро ВВ1⊥АВС=1 см

Площадь боковой поверхности этой пирамиды -  сумма площадей трех трапеций: двух прямоугольных и одной равнобедренной - той, что противолежит  ребру ВВ1. 

В основаниях пирамиды правильные треугольники - следовательно,   длины  средней линии всех трапеций равны 0,5•(3+5)=4 см

Площадь прямоугольных граней  равна произведению  их средней линии на  длину высоты пирамиды, т.е.  . 

S (АВВ1А1)=S (ВВ1С1С)= 4•1=4 см²

Чтобы найти  высоту грани АА1С1С,  проведем в основаниях пирамиды высоты  ВН и В1К  и соединим К и Н. 

Плоскость прямоугольной трапеции ВНКВ1 перпендикулярна плоскости оснований, т.к. содержит в себе отрезок ВВ1, перпендикулярный обоим основаниям.  

Из К опустим высоту КТ. 

КН по теореме о трех перпендикулярах перпендикулярна АС и является высотой трапеции АСС1А1. 

В прямоугольном треугольнике КТН катет КТ=ВВ1=1см, катет НТ равен разности высот оснований пирамиды. 

ВК=(3√3):2

BH=(5√3):2

ТН=2√3):2=√3 см

КН=√(КТ²+НТ²)=√4=2 см

S (АСС1А1)=4*2=8 см²

S(бок)=4+4+8=16 см²


Основаниями усечённой пирамиды являются правильные треугольники со сторонами 5 см и 3 см соответстве

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

А1. в прямоугольнике abcd ав = 24 см, ас = 25 см. найдите площадь прямоугольника. а2. найдите площадь прямоугольного треугольника, если гипотенуза его равна 40 см, а острый угол равен 60о. а3. найдите площадь ромба, если его диагонали равны 14 и 6 см. а4. найдите площадь равнобедренной трапеции, у которой высота равна 16 см, а диагонали взаимно перпендикулярны. в1. середины оснований трапеции соединены отрезком. докажите, что полученные две трапеции равновелики.
Ваше имя (никнейм)*
Email*
Комментарий*