
Каждое ребро правильной шестиугольной призмы равно а. Найдите площадь поверхности призмы.
---
Призма называется правильной, если ее боковые ребра перпендикулярны основаниям, а основания – правильные многоугольники.
Все ребра правильной призмы равны, ⇒
каждая из 6 боковых граней – квадрат, площадь которого S=a².
Ѕ(бок)=6а²
Основания правильной шестиугольной призмы - правильные шестиугольники, состоящие из 6 равных правильных треугольников.
Формула площади правильного треугольника S=(a²√3):4 ⇒
Ѕ (осн)•2=2•6•(a²√3):4=3а²√3
Площадь поверхности призмы равна сумме площадей: площади боковой поверхности и двух оснований.
S (призмы)= 6а²*+3•a²√3 или 3а²•(2+√3) ≈11,2а²
Объяснение:
. а) Сумма внутренних углов треугольника равна 180°. Значит третий угол треугольника равен 180°-70°--55°=55°. В треугольнике два угла равны, значит треугольник равнобедренный с основанием ВС, так как равные углы прилежат к стороне ВС.
б) Так как ВМ -перпендикуляр к АС, то треугольники АВМ и СВМ - прямоугольные. Сумма острых углов прямоугольного треугольника равна 90°, значит <АВМ=90°-70°=20°. <СВМ=90°-55°=35°.
2. а) Треугольники ВСО и ВСD равны по двум сторонам и углу между ними (АО=ОВ и СО=OD - дано, а <АОС =<BOD - вертикальные).
Что и требовалось доказать.
б) В равных треугольниках против равных сторон лежат равные углы. Следовательно, <ОАС=<OBD. Угол OBD=180°-20°-115°=45°.
ответ: <ОАС=45°.
Подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос: