Подробно. • На произвольной прямой отмечаем точки М и Н. • Из этих точек, как из центров, проводим две полуокружности так, чтобы они пересеклись по обе стороны от прямой. Точки пересечения полуокружностей соединяем. •Точку пересечения с прямой обозначим О - это будет вершина нужного угла. Построен срединный перпендикуляр. Отметим на нем отрезок ОК, на прямой - равный ему ОВ и соединим их. Треугольник КОВ - равнобедренный прямоугольный. • Разделим отрезок КВ пополам таким же образом, как при построении срединного перпендикуляра отрезка НМ, и соединим точку пересечения перпендикуляра и т. О. ОС - высота равнобедренного ∆ КОВ, следовательно, и биссектриса прямого угла КОВ, и угол СОВ=90°:2=45°. • Из т.О, как из центра, построим окружность. • Поставим ножку циркуля в точку пересечения ОС и окружности и тем же радиусом сделаем на окружности насечку и отметим т.А. • АС=R, OA=OC=R, след. ∆ АОС = равносторонний и угол АОС=60°. Угол АОВ=60°+45°=105°. Угол нужной величины построен.
rs90603607904
18.02.2021
Из вершины равностороннего треугольник АВС восстановлен перпендикуляр АD к плоскости треугольника. Найдите расстояние от точки D до стороны ВС, если АD=1 м, ВС=8м? *** Треугольник равносторонний, следовательно, все углы в нем равны 60º. Искомое расстояние - это отрезок DН, проведенный перпендикулярно ВС. DН - наклонная и ее основание Н по теореме о трех перпендикулярах совпадает с основанием высоты АН треугольника АВС, которая является проекцией наклонной DН. АН можно найти по т.Пифагора или с синуса 60º - результат будет одинаковым: АН=АС*sin 60º=(8*√3):2=4√3 Т.к.АD - перпендикуляр, треугольник АDН - прямоугольный. По т.Пифагора DН=√(AD²+AH²)=7 м или DН=√(DB²-BH²) ВD²=(AB²+AD²)=65 DН=√(65-16)=√49=7м
fetisov68av
18.02.2021
Опустим из вершины равнобедренного треугольника к основанию высоту АН →
Высота, проведённая в равнобедренном треугольнике к основанию, является и медианой и биссектрисой ВН = НС = 1/2 × ВС = 1/2 × 24 = 12 см
• На произвольной прямой отмечаем точки М и Н.
• Из этих точек, как из центров, проводим две полуокружности так, чтобы они пересеклись по обе стороны от прямой. Точки пересечения полуокружностей соединяем.
•Точку пересечения с прямой обозначим О - это будет вершина нужного угла. Построен срединный перпендикуляр. Отметим на нем отрезок ОК, на прямой - равный ему ОВ и соединим их. Треугольник КОВ - равнобедренный прямоугольный.
• Разделим отрезок КВ пополам таким же образом, как при построении срединного перпендикуляра отрезка НМ, и соединим точку пересечения перпендикуляра и т. О. ОС - высота равнобедренного ∆ КОВ, следовательно, и биссектриса прямого угла КОВ, и угол СОВ=90°:2=45°.
• Из т.О, как из центра, построим окружность. • Поставим ножку циркуля в точку пересечения ОС и окружности и тем же радиусом сделаем на окружности насечку и отметим т.А.
• АС=R, OA=OC=R, след. ∆ АОС = равносторонний и угол АОС=60°. Угол АОВ=60°+45°=105°. Угол нужной величины построен.