Четырехугольник АВ1А1В - трапеция, В1В и А1А - ее диагонали.
Треугольники, образованные отрезками иагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.( свойство трапеции).
Доказательство.
Рассмотрим ∆ АВ1А1 и ∆ ВВ1А1. У этих треугольников общее основание и высоты, равные высоте трапеции.
Формула площади треугольника S=a•h/2, где а - сторона треугольника, h- высота, проведенная к ней.
Если основания и высоты треугольников равны, их площади равны.
∆ АВ1А1= ∆ АВ1О+∆ В1ОА1
∆ ВВ1А1= ∆ ВОА1+∆ В1ОА1
Два треугольника с равной площадью состоят из частей, одна из которых - одна и та же. Следовательно, площади вторых частей этих треугольников равны.
S ∆ АОВ1=S∆ ВОА1, ч.т.д.
---------
Вариант – более короткое решение.
Каждая медиана треугольника делят его на два равновеликих ( равные высоты и основания).
S∆ ВCВ1=S ∆ АСА1=S ∆ АВС:2
Сумма площадей ∆ АОВ1+четырехугольника В1СА1О равна сумме площадей ∆ ВОА1+четырехугольника В1СА1О, равна половине площади ∆ АВС, из чего следует равенство площадей треугольников АВ1О и А1ВО
Поделитесь своими знаниями, ответьте на вопрос:
Средняя линия km треугольника abc отсекает от него треугольник kbm, площадь которого равна 10 см2. найдите площадь треугольника abc.