Втреугольнике abc дано угол a= пи/3, угол b=пи/4. продолжения высот треугольника abc пересекают описанную около него окружность в точках m, n, p. найти отношение площадей треугольников авс и mnp
Ничего задачка, можно нарушить самозапрет на публикации. Вся идея состоит в том, что у треугольников общая описанная окружность, а площадь можно выразить через радиус окружности и углы. S = a*b*sin(γ)/2 = 2*R*sin(α)*2*R*sin(β)*sin(γ)/2 = 2*R^2*sin(α)*sin(β)*sin(γ); Пусть высоты CM BN и AP; (просто таким образом я определяюсь, на какой дуге лежит какая из точек M, P, N, по хорошему это все равно, как обозначить.) Пусть ∠CAB = α = π/3; ∠CBA = β = π/4; Тогда ∠ACM = ∠NBA = π/2 - π/3 = π/6; А ∠APM = ∠ACM; ∠APN = ∠ABN; (высоты ABC являются биссектрисами треугольника MNP, также как для ортотреугольника) То есть ∠NPM = 2*(π/2 - α) = π - 2*α = π/3; Аналогично ∠NPM = 2*(π/2 - β) = π - 2*β = π/2; (получился прямоугольный треугольник) Так как sin(2α) = 2*sin(α)*cos(α), то очевидно, что Smnp/Sabc = 8*cos(α)*cos(β)*cos(α + β); Если подставить, получится 8*cos(π/3)*cos(π/4)*cos(π/3 + π/4); в данном случае надо взять по абсолютной величине, разумеется (то есть не обращать внимания, что cos(7π/2) < 0; а просто отбросить знак) 8*(1/2)*(√2/2)*l(√2/4 - √6/4)l = √3 - 1;
Stenenko
21.06.2021
Найдем сторону квадрата через его периметр. Периметр квадрата равен Р=4а; 6,6=4а; а=1,65 дм. Диагональ квадрата является диаметром описанной окружности, а она в корень из 2 больше его стороны,значит диагональ равна 1,65 корень из 2. Найдем радиус. Радиус в 2 раза меньше диаметра,т.е.1,65sqrt2:2=0,825sqrt2. Обозначим сторону шестиугольника с. Тогда по формуле радиуса описанной окружности возле правильного шестиугольника равна R=с/(2sin180/6); 0,825sqrt2=c/2sin30; 0,825sqrt2=c/2*1/2; c=0,825sqrt2. Теперь найдем периметр шестиугольника,т.к. шестиугольник правильный,то у него все стороны равны,тогда Р=6с; Р=6*0,825sqrt2=4,95sqrt2 дм
Васильевичь Виктория457
21.06.2021
1)в ромбе все стороны равны. точка пересечения диагоналей делит их пополам. рассмотрим один из прямоугольных треугольников, которые составляют ромб. гипотенуза =17 см(сторона ромба) катет равен 0,5*30(половина диагонали)=15по теореме Пифагора 17*17=а*а+15*15 > а*а=289-225=64 >а=8вторая диагональ равна 8*2=16. 2) ABCD - ромбBD=30 смЗначит BO=DO=15 см ( О - точка пересечения диагоналей)Рассмотрим треугольник AOB - прямоугольныйAB^2=BO^2+AO^2 - по теор ПифагораAO^2= 289-225AO=8 смЗначит AC=16 см.Всё))) Какая понятней но это одна и таже задача.
Вся идея состоит в том, что у треугольников общая описанная окружность, а площадь можно выразить через радиус окружности и углы.
S = a*b*sin(γ)/2 = 2*R*sin(α)*2*R*sin(β)*sin(γ)/2 = 2*R^2*sin(α)*sin(β)*sin(γ);
Пусть высоты CM BN и AP; (просто таким образом я определяюсь, на какой дуге лежит какая из точек M, P, N, по хорошему это все равно, как обозначить.)
Пусть ∠CAB = α = π/3; ∠CBA = β = π/4;
Тогда ∠ACM = ∠NBA = π/2 - π/3 = π/6;
А ∠APM = ∠ACM; ∠APN = ∠ABN; (высоты ABC являются биссектрисами треугольника MNP, также как для ортотреугольника)
То есть ∠NPM = 2*(π/2 - α) = π - 2*α = π/3;
Аналогично ∠NPM = 2*(π/2 - β) = π - 2*β = π/2; (получился прямоугольный треугольник)
Так как sin(2α) = 2*sin(α)*cos(α), то очевидно, что Smnp/Sabc = 8*cos(α)*cos(β)*cos(α + β);
Если подставить, получится
8*cos(π/3)*cos(π/4)*cos(π/3 + π/4); в данном случае надо взять по абсолютной величине, разумеется (то есть не обращать внимания, что cos(7π/2) < 0; а просто отбросить знак)
8*(1/2)*(√2/2)*l(√2/4 - √6/4)l = √3 - 1;