Ольга
?>

Дано: треугольник авс равнобедренный , ас=13, 8 ав=4, 5 найти : периметр треугольника

Геометрия

Ответы

titovass9
Если треугольник равнобедренный, то углы при основании равны. АВ основание, АС боковая сторона. АВ+АС+СВ =Р ; 4,5+13,8+13,8 =32.1
Artur-62838
Пусть AC - основание, AB и BC - стороны равнобедренного треугольника ABC. AC=13,8. AB=4,5. Как известно, у равнобедренного треугольника боковые стороны равны, значит, AB=BC. BC=4,5.
Периметр вычисляется (в данном случае) по формуле: P=AB+BC+AC=4,5+4,5+13,8=22,8. ответ: 22,8.
Nv-444
АО = СО = 9 см
ВО = ДО = 5 см
АМ = СМ = √(9²+12²) =√(81+144) = √225 = 15 см
МС = МД = √(5²+12²) =√(25+144) = √169 = 13 см
Расстояния между основаниями? Это как? Стороны и диагонали ромба?
AB = BC = СД = АД = √(9²+5²) =√(81+25) = √106 см
АС и ВД даны по условию.
---
2 варианта, к сожалению!
1) АС - гипотенуза
AO = AC/2 = 7,5 см
О - центр описанной окружности треугольника АВС и поэтому
АК = ВК = СК = √(7,5² + 8,5²) = √(15² + 17²)/2 = √(225+289)/2 = √514/2  см
2) AB - гипотенуза
АВ = √(8² + 15²) = √(64+225) = √289 = 17 см
AO = AВ/2 = 8,5 см
АК = ВК = СК = √(8,5² + 8,5²) = 8,5√2 см

1. через точку пересечения диагоналей ромба авсd проведен к его плоскости перпендикуляр мо длиной 12
1. через точку пересечения диагоналей ромба авсd проведен к его плоскости перпендикуляр мо длиной 12
IPMelnikovR146

M(7,7,11)\; ,\; \; A(0,8,1)\; ,\; \; B(6,0,1)\; ,\; \; C(14,6,1)

1) Высота правильной пирамиды проходит через СЕРЕДИНУ её основания. Основанием правильной четырёхугольной ПИРАМИДЫ служит КВАДРАТ. Его центр совпадает с точкой пересечения ДИАГОНАЛЕЙ, которая является СЕРЕДИНОЙ каждой из диагоналей квадрата.

Найдём координаты точки Н - середины ДИАГОНАЛИ АС:

x=\frac{1}{2}(14+0)=7\; ;\; y=\frac{1}{2}(8+6)=7\; ;\; z=\frac{1}{2}(1+1)=1\; .

Итак, Н(7,7,1) .

Вычислим высоту МН пирамиды:

MH=\sqrt{(7-7)^2+(7-7)^2+(1-11)^2}=\sqrt{0+0+100}=\sqrt{100}=10

2)  Апофема правильной пирамиды - это отрезок, соединяющий ВЕРШИНУ пирамиды с СЕРЕДИНОЙ стороны основания. Найдём координаты точки Р - середины СТОРОНЫ основания АВ:

x=\frac{1}{2}(0+6)=3\; ;\; y=\frac{1}{2}(8+0)=4\; ;\; z=\frac{1}{2}(1+1)=1\; .

Итак,  Р(3,4,1) . Следовательно,

MP=\sqrt{(3-7)^2+(4-7)^2+(1-11)^2}=\sqrt{16+9+100}=\sqrt{125}=5\sqrt5\; .

3)  Площадь боковой поверхности правильной пирамиды равна ПОЛОВИНЕ произведения ПЕРИМЕТРА основания и апофемы пирамиды. Найдём сторону АВ - СТОРОНУ ОСНОВАНИЯ пирамиды:

AB=\sqrt{(6-0)^2+(0-8)^2+(1-1)^2}=\sqrt{36+64+0}=\sqrt{100}=10\; .

ВЫЧИСЛИМ ПЕРИМЕТР ПИРАМИДЫ:  P=4\cdot 10=40  .

Вычислим площадь боковой поверхности пирамиды:

S=\frac{1}{2}\cdot 40\cdot 5\sqrt5=100\sqrt5\; .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дано: треугольник авс равнобедренный , ас=13, 8 ав=4, 5 найти : периметр треугольника
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lebedevevgen
belegaj98
Iprokopova81
info46
opscosmiclatte7868
alex07071
egorstebenev6
Rafigovich1267
Ladiga_Evgenii886
phiskill559
agitahell149
Nataliatkachenko1
liza04521160
layna1241383
denis302007