Задача с таким условием наверняка дается с рисунком, который должен быть приложен.
ответ: а) 24,2 м²; б) 34,848 м²; в) 8,712 м²
Объяснение:
Количество n свободных сторон, участвующих при измерении периметра, при различном расположении пяти квадратных участков двора может быть разным. (см. рисунок приложения)
Тогда длина стороны квадрата а=P:n, Ѕ (двора)=5•а²
а) № 1, 2, 3, 4 – n=12 ⇒ a=2640:12=220 cм=2,2 м ⇒ Ѕ=5•2,2² =24,2 м²
б) №5 – n=10. ⇒ а=2,64м ⇒ Ѕ= 5•2,64² =34,848 м²
в) №6 – n=20 ⇒ а=1,32 м ⇒ Ѕ=5•1,32² =8,712 м²
ответ: a) 62°; б) 118°
Объяснение: Вопрос явно неполный - не указан второй угол. Правильно: Углы ABC и BCD – смежные, причем угол ABC равен 124 градуса. Найдите угол между перпендикуляром, проведенным из точки B к прямой AD и биссектрисой угла CBD.
* * *
Сумма смежных углов 180°, поэтому ∠СВD=180°- ∠ABC=180°-124°=56°.
Обозначим биссектрису угла СВD как ВМ. Биссектриса угла делит его пополам, поэтому ∠СВМ=∠DBM=56°:2=28°
У задачи 2 варианта решения.
а) Перпендикуляр ВК к прямой AD лежит в той же полуплоскости, что луч ВС. Тогда искомый угол КВМ=∠КВD-∠MBD=90°-28°=62°
б) Перпендикуляр ВК1 лежит во второй полуплоскости. Тогда искомый угол К1ВМ=∠K1BD+∠DBM=90°+28°=118°
Поделитесь своими знаниями, ответьте на вопрос:
Катет прямоугольного треугольника равен 9 см, а гипотенуза 15 см. найди площадь треугольника
Под корнем(15 в квадрате - 9 в квадрате)= под корнем(225-81)= под корнем(144)= 12
Площадь = 1/2*9*12=54 см в квадрате