Доказательство
1) Возьмем произвольную точку M на биссектрисе угла BAC, проведем перпендикуляр MK и ML к прямым AB и AC
Рассмотрим прямоугольные треугольники AMK и AML. Они равны по гипотенузе и острому углу. (AM - общая гипотенуза, ∠1∠2 по условию\). Следовательно, MKML
2) Пусть точка M лежит внутри угла BAC и равноудалена от его сторон AB и AC. Докажем, что луч AM - биссектриса угла BAC
Проведем перпендикуляры MK и ML к прямым AB и AC. Прямоугольные треугольники AMK и AML - равны по гипотенузе и катету (AM - общая гипотенуза, MKML по условию ). Следовательно, ∠1∠2. Но это и значит, что луч AM - биссектриса угла BAC. Теорема доказана
Поделитесь своими знаниями, ответьте на вопрос:
На стороні bc паралелограма abcd взято точку p так, що ab=bp. знайдіть кут pad, якщо∠abc=100°.
Тогда в Δ АВР:
∠ВРА=∠ВАР как углы при основании.
2) Т.к. сумма углов в треугольнике равна 180°, а по условию ∠ АВС=100°=∠ АВР,
то ∠ВРА=∠ВАР=(180°-100°)/2 = 80°/2 = 40°.
3) В параллелограмме АВСD противолежащие стороны параллельны:
ВС║AD.
ТОгда ∠ВРА=∠РАD=40° как внутренние накрест лежащие при ВС║AD и секущей АР.
ответ: 40°.