Выразим у в уравнении прямой:
Параллельные линии имеют одинаковые коэффициенты перед иксом, поэтому запишем в общем случае уравнение такой касательной:
Суть касательных в том, что бы они имели 1 общую точку с графиком. Такие точки в нашем случае можно найти, если уравнение эллипса и уравнение касательной решить в системе, и при этом потребовать, что бы система имела ровно одно решение.
Подставим в первом уравнении вместо игрека второе уравнение, и теперь будем рассматривать отдельно только первое уравнение.
Здесь b идёт в качестве параметра. Для каждого решения этого уравнения (игрека) по второму уравнению можно найти икс (хотя здесь этого делать не нужно). Отсюда важный вывод - система имеет столько же решений, сколько это уравнение.
Найдём те значения параметра, при которых это уравнение будет иметь ровно одно решение.
Поделитесь своими знаниями, ответьте на вопрос:
Высота трапеции равна 10 см, меньшее основание 4 см, площадь 100 см2 .найдите большее основание трапеции.
ответ: 14
Объяснение: углы, прилежащие к одной боковой стороне трапеции составляют в сумме 180°. Угол 135° находится в при верхней основе трапеции. Поэтому нижний угол трапеции при этой же стороне будет: 180-135=45°. Теперь проведём из вершины угла 135° высоту к нижней основе трапеции. У нас получился прямоугольный треугольник с углами 90 и 45°. Соответственно угол, который образовался при проведённой высоте тоже будет равен 45°(180-45-45). Из этого следует что полученный треугольник равнобедренный, так как углы его равны. Значит высота равна отрезку, который эта высота образует при делении нижней основы трапеции. Также длина отрезка нижней трапеции от прямого угла до высоты = длине верхней основы =6. И тогда длина второго отрезка нижней основы =8-6=2. Поэтому длина высоты и отрезка, которые являются сторонами полученного прямоугольного треугольника равны каждая 2. Теперь найдём площадь трапеции. По формуле полусумма основ умноженная на высоту:(6+8)÷2×2=14÷2×2=7×2=14. S=14