Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
Поделитесь своими знаниями, ответьте на вопрос:
Найти углы треугольника с вершинами а(0; 6), в (4√3; 6), с(3√3; 3)
AB(4√3;0). Длина 4√3
AC(3√3;-3) Длина √(27+9)=6
BC(-√3;-3) Длина √(3+9)=2√3
Косинус угла между двумя векторами равен отношению модуля их скалярного произведения к длинам векторов
Косинус угла А равен
| 4√3*3√3+0 | / 4√3 / 6 = √3/2
Угол А = π/6 или 30 градусов
Косинус угла В равен
| 4√3*(-√3) | / 4√3 / 2√3 = 1/2
Угол В равен π/3 или 60 градусов
Угол С равен π - π/3 - π/6 = π/2 или 90 градусов