Расстояние между серединами перпендикуляра и наклонной равно 2√3 м.
Объяснение:
Дано: плоскости α║β, АВ ⊥ α, АВ ⊥ β, АВ = 3м, СD = 5м.
АС = 4м, BD = 4м. AF=EB, CF=FD.
Найти EF.
Проведем перпендикуляры СС1 и FF1 к плоскости β.
Четырехугольники АСС1В и EFF1B - прямоугольники и
C1B = FC = 4м, EF = BF1 (противоположные стороны прямоугольников.
Треугольник С1BD - равнобедренный с основанием С1D.
С1F1 = F1D, так как FF1 - средняя линия треугольника СС1D.
BF1 - медиана и высота этого треугольника.
В прямоугольном треугольнике CC1D по Пифагору:
C1D = √(CD²-CC1²) = √(5²-3²) = 4м. F1D = 2м.
В треугольнике С1BD по Пифагору
BF1 = √(BD²-F1D²) = √(4²-2²) = 2√3м.
EF = BF1 = 2√3 м.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренный прямоугольный треугольник вписан квадрат так, что две его вершины лежат на гипотенузе, а две другие-на катетах. найдите периметр квадрата, если гипотенуза равна 12см.
Пусть имеем треугольник АВС с прямым углом С, сторона ДЕ квадрата равна х.
Тогда ДВ = (12-х)/2. Но ДВ = ДЕ,
Отсюда х = (12-х)/2.
2х = 12 - х.
3х = 12,
х = 12/3 = 4 см.
Периметр квадрата Р = 4*4 = 16 см.