Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой. В правильном шестиугольнике прямая АС перпендикулярна плоскости СС1D1D. Проведем прямую СН перпендикулярно прямой С1D. Точка Н - середина диагонали квадрата СС1D1D. Значит расстояние от точки А до прямой С1D равно отрезку АН, перпендикулярному к С1D.
По Пифагору АН=√(АС²+СН²). АС=√3 (короткая диагональ правильного шестиугольника со стороной =1). СН=√2/2 (половина диагонали квадрата 1х1).
Следовательно, АН=√(3+(2/4)) = √14/2.
ответ: √14/2.
7см
Объяснение:
Если прямая перпендикулярна к плоскости, то она перпендикулярна к каждой прямой в этой плоскости, поэтому все треугольники AOK, BOK, COK и DOK с прямым углом.
К тому же они все одинаковы, так как имеют общий катет OK, диагонали квадрата также одинаковы и делятся в точке пересечения пополам OA=OB=OC=OD.
Значит, KA=KB=KC=KD, поэтому необходимо рассчитать только одно расстояние.
Проведём расчёты в треугольнике AOK. Если сторона квадрата равна 9 см, то диагональ квадрата равна 92√ см. AO равно половине диагонали.
По теореме Пифагора рассчитаем KA:
KA=(3)2+(92√2)2−−−−−−−−−−−−−−√≈ 7 см
Поделитесь своими знаниями, ответьте на вопрос:
Скажите главные особенности природы земли!
Одна из особенностей Земли — наличие в ее строении внешних и внутренних оболочек. Ближайшие к Земле планеты почти полностью или совсем утратили внешние оболочки.
Во всех оболочках Земли интенсивно протекают природные процессы, создающие необычайное разнообразие ландшафтов.