1)
Δ АСВ – прямоугольный.
По теореме Пифагора
АВ2=AC2+BC2=225+400=625
AB=25
Проводим высоту СН прямоугольного Δ АСВ
СH– проекция MH
CН⊥АВ, по теореме о трех перпендикуярах MH ⊥АВ
Расстояние от вершины M до АВ и есть МН,
Из формула площади прямоугольного треугольника АСВ
S=1/2·АС·ВС
и
S=(1/2)·АВ·СН
СН=АС·ВС/АВ=20·15/25=12
Из прямоугольного треугольника МСН прямоугольный
МН=СН/сos 60 °=12/0,5=24
О т в е т. Расстояние от вершины пирамиды до прямой АВ равно 24 см.
2)
Из прямоугольного треугольника МСН прямоугольный
МC2=MH2–CH2=242–122=432
MC=12√3
S=S Δ MBC+S Δ MAB+S Δ MAD+S Δ MDC+S(ABCD)
S Δ MBC=(1/2)BC·CD=(1/2)·20·12√3=
S Δ MAB=(1/2)AB·CH=(1/2)·25·12=150
CK⊥АD
CK=AB·CH/AD=25·12/20=15
S Δ MAD= (1/2)AD·CK=(1/2)20·15=150
S Δ MDC=(1/2)CD·MC=(1/2)·25·12√3=
S(ABCD)=2S Δ ABC=2·(1/2)BC·AC=20·15=300
Поделитесь своими знаниями, ответьте на вопрос:
Трапеции abcd ad-большее основание.через вершину c проведена прямая параллельная ab, до пересечения с ad в точке e. de=6см, ae=11см.найти: 1) длину средней линии трапеции. 2)периметр трапеции если периметр треугольника cde равен 21см. с рисунком дано и решением
ABCD - трапеция
CE || AB
DE = 6 см
AE = 11 см
1. Рассмотрим четырехугольник АВСЕ:
CE || AB (по условию)
ВС || AE (свойство трапеции)
следовательно четырехугольник АВСЕ - параллелограмм
противолежащие стороны параллелограмма равны ⇒ ВС = АЕ = 11 см
АD = АЕ + DЕ = 11 + 6 = 17 см
Средняя линия трапеции равна полусумме оснований
Средняя линия = (АD + ВС)/2 = (17 + 11)/2 = 28/2 = 14 см.
2. В треугольнике СDЕ сумма сторон СЕ и СD = 21 - 6 = 15 см
АВ = СЕ (так как АВСЕ параллелограмм) следовательно сумма боковых сторон трапеции АВ + СD = 15 см.
Периметр трапеции = АВ + СD + ВС + АD = 15 + 11 + 17 = 43 см.