Высота прямоугольного треугольника, проведенная к гипотенузе, может быть найдена тем или иным в зависимости от данных в условии задачи.
Длина высоты прямоугольного треугольника, проведенной к гипотенузе, может быть найдена по формуле
или, в другой записи,
где BK и KC — проекции катетов на гипотенузу (отрезки, на которые высота делит гипотенузу).
Высоту, проведенную к гипотенузе, можно найти через площадь прямоугольного треугольника. Если применить формулу для нахождения площади треугольника
(половина произведения стороны на высоту, проведенную к этой стороне) к гипотенузе и высоте, проведенной к гипотенузе, получим:
Отсюда можем найти высоту как отношение удвоенной площади треугольника к длине гипотенузы:
Так как площадь прямоугольного треугольника равна половине произведения катетов:
То есть длина высоты, проведенной к гипотенузе, равна отношению произведения катетов к гипотенузе. Если обозначить длины катетов через a и b, длину гипотенузы — через с, формулу можно переписать в виде
Так как радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы, длину высоты можно выразить через катеты и радиус описанной окружности:
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник АВС –прямоугольный, СН –высота треугольника, АС=20, АН =10. Найдите угол В. Решите
Рассмотрим треугольник AOC и треугольник BOD:
Угол AOC = BOD (как вертикальные)
AO=OB и CO=OD (по условию,т.к. точка является O - посередине)
значит, треугольник AOC = равен треугольнику BOD (по двум сторонам и углу между ними)
значит угол DAO = равен углу CBO(в равных треугольниках против равных сторон лежат равные углы)
2
Рассмотрим треугольник ABD и треугольник ADC:
по условию, угол BDA = углу ADC
сторона AD - общая и по условию угол BAD = углу DAC (т.к. AD - биссектриса)
Значит, треугольник ABD = треугольнику ADC(по двум углам и стороне между ними)
значит сторона AB=AC(т.к. в равных треугольниках против равных углов лежат равны стороны)