трапеция авсд, высота вн пересекает диагональ ас в точке о, при этом во =10, он=8.; ав =вс=х по условию, значит треугольники аон и сов подобны по двум углам (так как угол вас =углу вса и углы при вершине о равны как вертикальные) из подобия треугольников следует пропорция вс/ан=во/он, т.е х/ан=10/8,значит ан= 4х/5 и всё нижнее основание ад= 4х/5+х+4х/5, т.е ад=13х/5. но из прямоугольного треугольника авн по теореме пифагора авв квадрате = ан в квадрате + вн в квадрате, т.е х в квадрате = (4х/5)в квадрате + 18 в квадрате. отсюда х=30. тогда верхнее основание вс=30,нижнее ад= 13х/5=78 и площадь трапеции равна полусумме оснований умножить на высоту, т.е (78+30)/2 и умножить на 18, получится 972.
ответ: 972
Поделитесь своими знаниями, ответьте на вопрос:
55 . 1.один из углов при пересечении двух параллельных прямых третьей равен 52 градуса. найти остальные углы 2.найдите каждый из восьми углов образованных при пересечении двух параллельных прямых третьей прямой, если внутренние односторонние углы относятся как 2: 3 3. треугольник abc равнобедренный с основанием ab, через середины его боковых сторон проведена прямая c. докажите, прямые ab и c параллельны
Проведем плоскость через 3 точки P, B1, B2 (назовем ее плоскость с)- эта плоскость пересекает две параллельные плоскости.
Плоскость с пересекает плоскость a по прямой A1A2.
Плоскость с пересекает плоскость b по прямой B1B2.
Так как a||b, то и A1A2||B1B2.
Отсюда следует что треугольники PA1A2 и PB1B2 подобны (по трем углам (угол Р - общий, а углы PA1A2 и PB1B2, PA2A1 и PB2B1 равны как соответствующие углы при параллельных прямых))
РА1 : PВ1 = 2:5
РА1 : PВ1=A1A2 : B1B2
2:5=10:B1B2
2B1B2=50
B1B2=25