ответ: Такого треугольника не может быть.
Объяснение: Биссектриса делит угол 130° на 2 равных по 65°.
Высота отсекает от треугольника прямоугольный треугольник с острым углом между высотой и боковой стороной 15°. (65°-50°=15°). Сумма острых углов треугольника 90°. Поэтому второй острый угол этого треугольника будет 90°-15°=75°. Получится, что сумма двух углов треугольника 130°+75°=205°, чего быть не может. А есть ведь ещё и третий угол.
Встречается подобная задача, где угол между высотой и биссектрисой 10°. Тогда решение возможно. Углы при основании получим 35° и 15°. При проверке сумма углов треугольника 130°+35°+15°=180°.
Подробное решение такой задачи дано мной на
Поделитесь своими знаниями, ответьте на вопрос:
Если длины катетов прямоугольного треугольника являются корнями квадратного уравнения с рациональными коэффициентами и длина одного из катетов равна √5+3.то найти плошадь этого треугольника.
Один корень квадратного уравнения 3+√5, другой 3-√5, уравнение получается такое
((х-3)-√5)*((х-3)+√5)=0
(х-3)²-(√5)²=0
х²-6х+9-5=0
х²-6х+4=0 - это уравнение, у которого рациональные коэффициенты, а длины катетов являются корнями этого уравнения. Тогда площадь треугольника равна(3+√5)(3-√5)/2=(9-5)/2=2/ед. кв./
Осталось порассуждать, почему именно так подобраны коэффициенты и будет ли этот треугольник единственным.
Я думаю, что рациональные коэффициенты могли быть получены в результате произведения сопряженных корней.
Как вариант..ответ 2.