В трапеции ABCD основание AD вдвое больше основания BC и вдвое больше боковой стороны CD угол ADC равен 60 градусам, BD = 4 корня из 3. Найдите площадь трапеции
Что бы вписать окружность в трапецию, необходимо что бы суммы противоположных сторон были равны. Следовательно сумма двух равных боковых сторон (20) должна равняться сумме двух оснований трапеции. Тогда второе основание соответственно равно 18 см. Площадь трапеции это полусумма оснований умноженная на высоту. Так как трапеция равнобедренная можем найти высоту: Опустим две высоты к большему основанию и получим три фигуры: два равных прямоугольных треугольника и прямоугольник. Катет прямоугольного треугольника будет равен: (18-2):2=8 см. А гипотенуза 10 см. По теореме Пифагора найдем второй катет: 10^2=8^2+х^2 100=64+х^2 х^2=36 х=6 Высота трапеции равна 6 см. Можем найти площадь: S=(2+18)/2 *6 S=20/2 *6 S=10*6 S=60 см^2. ответ: площадь трапеции равна 60 см^2.
ietishkin
14.12.2020
S(трап) = 1/2(осн1 + осн 2) * высота; основания есть, высоту надо найти. Предлагаю, обозначения АВСД - данная трапеция, (рисуем картину), АВ=13 см СД=15 см ВС=5 см, АД=19 см S(ABCD)-?
Решение Пусть х см = отрезок АН, ( ВН - высота, опущенная из вершины В трапеции); тогда (19-5-х) = 14-х см = РД ( СР высота, опущенная из вершины С). Так как треугольник АВН ( уг Н=90*) и тр ДСР (уг Р=90*) прямоугольные и высоты в трапеции равны, то выразим высоту трапеции (ВН =СР) по теореме Пифагора из двух указанных треугольников, получаем уравнение: 169-х^2=225-(14-x)^2 169-x2=225-196+28x-x2 28x = 140 x=5 сторона АН треуг АВН
По т Пифагора к тр АВН найдем ВН, получаем: ВН=√(169-25) = √144 = 12 см - высота трапеции
В трапеции ABCD основание AD вдвое больше основания BC и вдвое больше боковой стороны CD угол ADC равен 60 градусам, BD = 4 корня из 3. Найдите площадь трапеции
Решение на фото/////