Алиференко_Елена342
?>

Докажите равенство прямоугольных треугольников по гипотенузе и высоте опущенной на гипотенузу

Геометрия

Ответы

Stenenko
Для этого надо найти длины сторон по координатам вершин:
A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 =  8.544004.
ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6.
АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 =  8.544004.
Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный.  Высота, опущенная на сторону а, равна:
ha = 2√(p(p-a)(p-b)(p-c)) / a.
       a            b             c                  p                  2p                 S
8.5440037  6   8.5440037  11.544004   23.08800749      24
     ha                 hb              hc
 5.61798           8           5.61798 
mushatolga

Задачу можно решить двумя обычным и через sin))) Какой вам лучше, выбирайте сами.

Обозначим параллелограмм, как АВСД

ВН - высота, опущенная на сторону АД

АН = 4 см, НД = 2 см.

АД = АН + НД = 4 + 2 = 6 см.

параллелограмма = АД × ВН

Угол В = 135 - 90 = 45 градусов (т.к. ВН - высота, следовательно, она опущена под углом 90 градусов)

Рассмотрим треугольник АВН. Угол ВНА = 90 градусов, АВН = 45 градусов, следовательно угол ВАН = 180 - 90 - 45 = 45 градусов. Значит треугольник АВН - равнобедренный

Следовательно, ВН=АН=4 см.

S параллелограмма = 6 × 4 = 24

параллелограмма = АВ × АД × sin a

Sin а = 45 градусов = √2 делённое на 2

АВ² = √ВН² + АН² = √4² + 4² = √32

S параллелограмма = √32 ×  6 × √2 делённое на 2 = 24

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Докажите равенство прямоугольных треугольников по гипотенузе и высоте опущенной на гипотенузу
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

admiral-kazan
ars-trushakova
master-lamaster
lenarzhaeva
Shelchkowa453
Татьяна_Полулях
mariokhab
bei07
Yezhov_igor42
Avshirokova51
Sadovskaya425
Tatyana1374
borisowaew
ksen1280
Альберт Луиза1595