ответ:
1.для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
синус пи, косинус пи, тангенс пи и других углов в радианах
ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах. для этого воспользуйтесь второй колонкой значений угла. этому можно перевести значение популярных углов из градусов в радианы. например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.
число пи однозначно выражает зависимость длины окружности от градусной меры угла. таким образом, пи радиан равны 180 градусам.
любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180.
примеры:
1. синус пи.
sin π = sin 180 = 0
таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.
2. косинус пи.
cos π = cos 180 = -1
таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.
3. тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.
таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)
значение угла α
(градусов)
значение угла α
в радианах
(через число пи)
sin
(синус) cos
(косинус) tg
(тангенс) ctg
(котангенс) sec
(секанс) cosec
(косеканс)
0 0 0 1 0 - 1 -
15 π/12 синус 15 градусов косинус 15 градусов 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 косинус 15 градусов, синус 75 градусов синус 15 градусов, косинус 75 градусов 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 косинус 15 градусов -синус 15 градусов
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 2π 0 1 0 - 1 -
если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства .
таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 360 градусов
(цифровые значения "как по таблицам брадиса")
значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
иногда для быстрых расчетов нужно не точное, а вычисляемое значение (число десятичной дробью), которое раньше искали в таблицах брадиса. поэтому, в дополнение к таблице точных значений тригонометрических функций эти же самые значения, но в виде десятичной дроби, округленной до четвертого знака. дополнительно в таблицу включены "нестандартные" значения тангенса, косинуса, синуса 140 градусов, синуса 105, 70, косинуса 105 и 50 градусов.
пример: синус 60 градусов равен приблизительно 0,866025404, а в таблице указано значение sin 60 ≈ 0,8660 ; косинус 30 градусов равен этому же самому числу (см. формулы преобразования тригонометрических функций)
2. cos²α=-√1-0,6²=-√1-0,36=-√0,64
cos=-0,8
tgα=sinα÷cosα=-0,6÷0,8=-0,75
3.)1+ctg^2 5a=1/sin^2 5a
объяснение:
Ребро не было указано в условии задачи, поэтому я обозначу его за {a}.
--------------
а)
проекция Точки A на плоскость (A1B1C1)=A1, проекция точки D=D1, значит проекция отрезка AD=A1D1.
Отрезок A1D1║B1C1 из свойств правильного шестиугольника, и A1D1║AD так как плоскость (ABC)║(A1B1C1) значит AD║B1C1 Ч.Т.Д.
---------------
б)
Рассмотрим треугольник A1B1C1, опустим высоту A1H на основание B1C1, AH Также будет ⊥B1C1 по теореме о трех перпендикулярах, значит AH искомое расстояние.
AA1 будет ⊥A1H так-как он ⊥ плоскости (A1B1C1).
найдем A1H методом площадей в треугольнике A1B1C1.
A1H также можно было найти рассмотрев треугольник A1BH, сказав что A1H=A1B1*sin(60)
-----------
теперь по теореме пифагора найдем AH:
ответ:
Поделитесь своими знаниями, ответьте на вопрос:
Прямая, проходящая через середину одной из сторон параллелограмма , является его осью симметрии. Тогда этот параллелограмм не может быть Укажите правильный вариант ответа: прямоугольником ромбом квадратом
Ось симметрии через середину стороны означает равенство углов при этой стороне. Внутренние односторонние при параллельных равны только если они прямые (180/2=90). Таким образом имеем параллелограмм с прямым углом - прямоугольник.
Квадрат является прямоугольником и ромбом.