Nazart44446
?>

даны два равнобедренных прямоугольных треугольника:треугольник МРА, где угол Р=90 градусов, а катет МР=9 см и греугольник ВСК, где угол С=90 градусов, а гипотенуза ВК=22, периметр второго треугольника равен 38. докажите, что эти треугольники равны. ​

Геометрия

Ответы

elenalukanova

Объяснение:

ЗАДАЧА 6

ДАНО: ∆АВС прямоугольный, <С=90°, <А=60°, АС=4

НАЙТИ: АВ

РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°, поэтому <В=90–60=30°

Катет АС, лежащий напротив него равен половине гипотенузы, поэтому гипотенуза АВ=2×4=8

ОТВЕТ: АВ=8

ЗАДАЧА 7

ДАНО: ∆АВС - прямоугольный, <С=90°, АС=ВС, СД=6

НАЙТИ: АВ

Если АС=ВС, то этот треугольник равнобедренный, а высота СД, проведённая из вершины прямого угла также является медианой и биссектрисой, а медиана, проведённая из вершины прямого угла равна половине гипотенузы, поэтому СД=½АВ или АВ =2СД=2×6=12

ОТВЕТ: АВ=12

ЗАДАЧА 8

ДАНО: ∆ АВС - прямоугольный, <А:<В=2:1, АВ=14, <С=90°

НАЙТИ: АС

РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°. Обозначим пропорции 2:1 как 2х и х и составим уравнение:

2х+х=90

3х=90

х=90÷3=30°

Итак: угол В=30°, тогда угол А=2×30=60°

Так как АС лежит напротив угла 30°, то АС=½АВ=½×14=7

ОТВЕТ: АС=7

ЗАДАЧА 9

ДАНО: ∆АВС прямоугольный: <С=90°, АС=ВС=10, АМ=СМ, МР перпендикулярно АС.

НАЙТИ: МР

РЕШЕНИЕ: МР делит катет АС пополам, поэтому АМ=СМ=10÷2=5.

МР является средней линией ∆АВС и если МР перпендикулярно АС, тогда он будет параллелен ВС. По свойствам средней линии треугольника МР=½ВС=½×10=5.

Можно также использовать средней линии, так как она является средней линией в равнобедренном треугольнике, а наш треугольник АВС именно равнобедренный, то МР отсекает от ∆АВС треугольник АРМ подобный ∆АВС. Поэтому ∆АРМ также является равнобедренным, у которого катеты АМ=РМ=5

ЗАДАЧА 10

ДАНО: ∆АВС - прямоугольный, <С=90°, <А=30°, ВК - биссектриса <В=8

НАЙТИ: АС

Так как сумма острых углов прямоугольного треугольника составляет 90°, то <В в ∆АВС=90–30=60°. Поскольку ВК - биссектриса, то она делит <В пополам поэтому <СВК=<АВК=60÷2=30°

Рассмотрим ∆АВК. В нём <АВК=<А=30°, из чего следует что ∆АВК - равнобедренный, поэтому ВК=АК=8

Рассмотрим ∆СВК. Он прямоугольный, и ВС и СК - катеты, а ВК - гипотенуза. В нём <СВК=30°, а катет СК, лежащий напротив него равен половине гипотенузы ВК, поэтому СК=½×ВК=8÷2=4

Итак: АК=8, СК=4.

Тогда АС=СК+АК=4+8=12

ОТВЕТ: АС=12

beliaevabeliaeva-olesya35
Отрезки диаметра имеют отношение 18:16=18х:16х.
18х+16х=34,
34х=34,
х=1,
значит отрезки равны 18 и 16.
Диаметр, перпендикулярный хорде, делит её пополам, значит отрезки хорды относятся 1:1.
По теореме о пересекающихся хордах (диаметр тоже хорда), если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Пусть отрезки хорды равны у, тогда у·у=18·16,
у²=288,
у=12√2,
Хорда равна 2у=24√2.
Площадь треугольника равна половине произведения основания на высоту. Если основанием считать хорду, то наибольшей высотой к ней, вписанной в данную окружность, является больший отрезок диагонали, значит площадь наибольшего треугольника с хордой в качестве основания, равна:
S=24√2·18/2=216√2 (ед²) - это ответ.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

даны два равнобедренных прямоугольных треугольника:треугольник МРА, где угол Р=90 градусов, а катет МР=9 см и греугольник ВСК, где угол С=90 градусов, а гипотенуза ВК=22, периметр второго треугольника равен 38. докажите, что эти треугольники равны. ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Романенко
Sergeevich-irina
vasilevich-F
Вячеславовна_Сагитович
ulyana-d
NIKOLAI
jamaltreid
Dushko
annazhurawlewa
evatautes
rezh2009766
АндреевичОльга641
semenovakotya577
ag-modul
Dmitrievna Lvovich