Two hours fifteen minutes minutes of sleep and I was wondering if you could give me a call when you get
astenSA
19.03.2020
АВСЕ - пирамида с вершиной Е. В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2. ОК=ОВ/2=2а/2=а. ЕК - апофема на сторону АС. В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а², ЕК=2а - апофема. б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием. в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема. R=AB/√3 ⇒ AB=R√3=2a√3. P=3AB=6a√3. Sб=6a√3·2a/2=6a²√3 (ед²).
iamhrusha
19.03.2020
Вот забавное решение, я только поэтому и пишу ,что решение очень симпатичное, эту элементарную задачу можно решить миллионом Если взять ТРИ ТАКИХ треугольника, и совместить их так, чтобы основания образовали правильный треугольник (а вершины были бы снаружи этого треугольника), то боковые стороны этих треугольников образуют правильный шестиугольник. В самом деле, углы при всех вершинах шестиугольника будут 120° (30° + 30° + 60° = 120°), и все стороны равны, в данном случае 5. Окружность, описанная вокруг такого шестиугольника, будет так же и окружностью, описанной вокруг любого из трех первоначальных треугольников. Поскольку радиус окружности, описанной вокруг правильного шестиугольника, равен стороне, ответ 5. :
Two hours fifteen minutes minutes of sleep and I was wondering if you could give me a call when you get