Углы ромба, прилежащие к одной стороне, в сумме равны 180°, следовательно, острый угол ромба равен 180°-120°=60°. Меньшая диагональ ромба лежит против острого угла, причем является основанием равнобедренного треугольника, так как боковые стороны этого треугольника - стороны ромба, которые равны. Итак, в равнобедренном треугольнике угол при вершине равен 60°, следовательно и углы при основании (равные между собой) равны по 60°. Имеем РАВНОСТОРОННИЙ треугольник, в котором все стороны равны стороне ромба, то есть и меньшая диагональ равна этой стороне.. Сторона ромба равна периметру, деленному на 4, то есть сторона ромба= 36:4=9. ответ: меньшая диагональ ромба равна 9.
aivanova
21.07.2022
Дано: АВСD
∠DАВ = ∠АВС = 60° ;
∠САВ = ∠СВD
Док-ть: АD + СВ = АВ Решение. Продолжим стороны ВС И АD от точек С и D до пересечения в точке О. Полученный Δ АОВ – равносторонний, т.к. ∠DАВ = ∠АВС = 60° по условию, значит, и ∠АОВ = 180° – 60° – 60° = 60°. Из равенства углов следует равенство сторон: АВ = ОВ = АО Рассмотрим ΔАВС и ΔВОD; ∠АВС = ∠ВОD = 60°; ∠САВ = ∠СВD по условию, стороны между углами также равны: АВ = ОВ. ⇒ ΔАВС = ΔВОD Из равенства треугольников следует: CВ = ОD Но АО = ОD + АD, заменив АО на АВ, а ОD на СB получим: АВ = CВ + АD, что и требовалось доказать!
Решение с рисунком дано в приложении.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольнике abcd ad=49, ab=40.на стороне аd отмечена точка м так, что треугольник авм - равнобедренный. найдите см.