По условию: AO=OB, CO=OD
углы: AOC=BOD (как вертикальные)
треугольники: AOC=BOD (по двум сторонам и углу между ними)
отрезки: AC=BD (следует из равенства треугольников AOC и BOD)
углы: BOC=AOD (как вертикальные)
треугольники: BOC=AOD (по двум сторонам и углу между ними)
отрезки: BC=AD (следует из равенства треугольников BOC и AOD)
треугольники: ACD=BDC (по трём сторонам)
Если вы тему параллелограмм можно доказать гораздо проще.
четырёхугольник ACBD -- параллелограмм (по признаку)
BC=AD, AC=BD (противоположные стороны параллелограмма)
углы CAD=CBD (противоположные углы параллелограмма)
треугольники ACD=BDC (по двум сторонам и углу между ними)
2)
угол CBD=180°-BCD-BDC
углы BDC=ACD (следует из равенства треугольников ACD и BDC)
тогда угол CBD=180°-BCD-ACD=180°-(ACD+BCD)=180°-ACB=180°-118°=62°
Если вы параллелограмм, тогда
угол CBD=180°-ACB (как внутренние односторонние при сечении параллельных AC и BD прямой BC)
CBD=62°
а)
Тр-к АОД = тр-ку СОВ (ОС=ОД, ОА=ОВ, уг. АОД =уг.СОД -вертикальные).
Против равных углов, в равных тр-ках лежат равные стороны: АД = ВС.
Тр-к АОС = тр-ку ДОВ (ОС=ОД, ОА=ОВ, уг. АОС =уг.ВОД -вертикальные).
Против равных углов, в равных тр-ках лежат равные стороны: АС = ВД.
Тр-к АСД = тр-ку ВДС (АД = ВС, АС = ВД,СД - общая сторона)
Это и требовалось доказать.
б)четырехугольник АДВС - параллелограмм, т.к. АД параллельна и равна СВ, а АС параллельна и равна ВД (это следует из равенства треугольников).
Тогда уг. АСВ = 180гр. - 68гр. = 112гр.
Угол АСД найти нельзя. для этого нужно знать длину хотя бы одной стороны.
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc угол c равен 90 градусов, ab = 25, sina=0, 6. найдите высоту ch. , ! это важно!
В треугольнике АВС: CosA=AC/AB (отношение прилежащего катета к гипотенузе).
АС=АВ*CosA. = 25*0,8=20.
В треугольнике АНС SinA=CH/AC (отношение противолежащего катета к гипотенузе). СН=АС*SinA. = 20*0,6=12.
ответ: СН=12.