№1: я немного не поняла, это угол равен 25?
если так, тогда: 1) противоположные углы равны, следовательно угол 1 = 25 градусов, угол 3 = 25 градусов
2) найдем оставшиеся углы 2 и 4:
360 (т.к. сумма углов 4-угольника = 360) - (25+25)
360-50=310
следовательно:
угол 2 = углу 4 = 310/2=155
Вроде так
№2: пусть одна сторона параллелограмма равна х, тогда другая равна 2х
1) составим уравнение:
х+х+2х+2х=48
2х+4х=48
6х=48
х=8
2) следовательно вторая сторона равна 8*2 = 16
Вроде так
№3: не знаю как рисунок сделать
cos∠B = 0
cos∠A = 0,6
cos∠C = 0,8
Объяснение:
Найдем длины сторон треугольника по формуле расстояния между точками:
Проверим по теореме, обратной теореме Пифагора, не является ли этот треугольник прямоугольным:
AC² = AB² + BC²
(5√2)² = (3√2)² + (4√2)²
50 = 18 + 32
50 = 50 - равенство верно, значит треугольник прямоугольный с гипотенузой АС.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
Косинус прямого угла равен нулю.
cos∠B = 0
cos∠A = AB / AC = 3√2 / 5√2 = 3/5 = 0,6
cos∠C = BC / AC = 4√2 / 5√2 = 4/5 = 0,8
Поделитесь своими знаниями, ответьте на вопрос:
Равнобокую трапецию вписано в окружность, центр которой принадлежит одной из оснований. угол между диагоналями трапеции, противоположный ее боковой стороне, равен 48°. найдите углы трапеции.
Теорема: "(угол между пересекающимися хордами). Угол между двумя пересекающимися хордами равен полусумме высекаемых ими дуг: α=(дугаАВ+дугаCD)/2".
В нашем случае пересекающиеся хорды - это диагонали трапеции.
Дуги АВ и CD равны, так как стягиваются равными хордами (трапеция равнобедренная).
Тогда градусная мера этих дуг равна 48°.
На эти же дуги опираются вписанные углы АСВ и ВDA.
Значит эти углы равны по 24°.
Углы АВС и ВСD равны 180°-24°=156°. (свойство трапеции).
ответ: углы трапеции <A=<D=24°, <B=<C=156°.