Расстояние от точки до прямой измеряется длиной перпендикуляра. AC⊥BC, AC - расстояние от точки A до прямой BC.
Катет AC лежит против угла 30 и равен половине гипотенузы AB. AC=AB/2=10.
1) если окружность касается прямой, то радиус равен расстоянию от центра окружности до прямой, R=10.
2) если окружность не имеет общих точек с прямой, то радиус меньше расстояния от центра окружности до прямой, R<10.
3) если окружность имеет две общих точки с прямой, то радиус больше расстояния от центра окружности до прямой, R>10.
Объяснение:
Описываю рисунок: Пусть хорда АВ = 9, Хорда АС = 17, ДЕ - отрезок, соединяющий середины этих хорд. Тогда в треугольнике АВС ДЕ - средняя линия. По свойству средней линии ВС = 2ДЕ = 10 см.
Найдем радиус окружности, описанной около треугольника АВС по формуле:
R = abc/4S, где a, b,c -стороны треугольника АВС, S - его площадь.
Площадь треугольника найдем по формуле Герона:
s = под корнем р(р-а)(р-в)(р-с), где р - полупериметр треугольника
р = (17+9+10)/2=18
s= под корнем 18*1*9*8 = 36(кв.см)
R = (17*9*10)/(4*36) = 85/8
Тогда диаметр в 2 раза больше радиуса, т.е. 85/8 умножим на 2 = 85/4 = 21,25(см)
ответ: 21,25 см
Поделитесь своими знаниями, ответьте на вопрос:
Схематично построить график y=(1/8)^x