Вариант 1. Найдем площадь треугольника АВС. Треугольник равнобедренный, значит высота ВН, проведенная к основанию АС, является и его медианой и равна ВН=√(АВ²-(АС/2)²) или ВН=√(20²-16²)=12. Sabc=(1/2)*AC*BH или Sabc=(1/2)*32*12=192 см². Но площадь этого треугольника также равна S=(1/2)*h*a, где а - боковая сторона треугольника, а h - высота, проведенная к этой стороне. Тогда искомая высота h=2S/a или h=2*192/20 =19,2см. ответ: высота, проведенная к боковой стороне данного треугольника, равна 19,2 см.
Второй вариант: Найдем площадь треугольника по формуле Герона: S=√[p(p-a)(p-b)(p-c)], где р - полупериметр, a,b, c - стороны. В нашем случае р=(20+20+32)=36. Тогда S=√(36*16*16*4)=192см². Площадь также равна Sabc=(1/2)*h*a, где а - сторона треугольника, а h - высота, проведенная к этой стороне. Тогда искомая высота h=2S/a или h=2*192/20 =19,2см.
Александр Джабраиловна1967
07.05.2023
Пусть ABCD - ромб со стороной 18 (см). Диагональ AC больше диагонали BD на 4 (см) Пусть диагональ AC= Х, тогда диагональ BD= Х - 4 Диагонали ромба пересекаются под прямым углом и точкой пересечения (О) делятся пополам⇒ AO = AC / 2 = x / 2 BO = BD / 2 = (х - 4) / 2 В прямоугольном треугольнике AOB: AO и BO - катеты, AB - гипотенуза. По теореме Пифагора: AO² + BO² = AB²
Угол 1 - X+28
Можем составить уравнение
X+X+28=180
2X=180-28
2X=152
X=152\2
X=76°-Угол 2
76+28=94°- угол 1