№1. х - одна часть 5х - меньшая сторона 12х - большая сторона Диагональ прямоугольника разбивает его на два равных прямоугольных треугольника, по т.Пифагора, с.у. (5х)²+(12х)² = 26² 169х² = 676 х=26:13 х = 2 одна часть 5х=5*2=10 - меньшая сторона
№2. Внутренний острый угол прямоугольного треугольника, смежный с внешним 180-135=45 - каждый из острых углов прямоугольного треугольника ⇒ ПРЯМОУГОЛЬНЫЙ треугольник РАВНОБЕДРЕННЫЙ. Находим катет 4√2*√2:2=4 - каждый катет прямоугольного, равнобедренного прямоугольного треугольника ответ: 4; 4
myatadinamo
10.07.2021
По сути, задача сводится к нахождению высоты прямоугольного треугольника, образованного пересечением диагоналей и стороной ромба. Итак, известно, что диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам, то есть у нас есть 4 равных прямоугольных треугольника с катетами 15/2 и 10. Найдём гипотенузу этого треугольника (то есть сторону ромба) по теореме Пифагора: c=sqrt(a^2 + b^2) = sqrt(225/4 + 100) = 25/2 Высота прямоугольного треугольника, проведённая к гипотенузе, считается по формуле: h=ab/c = 6. Так как окружность вписана в ромб, то радиус этой окружности перпендикулярен стороне ромба, то есть радиус равен высоте, которую мы только что нашли. И теперь считаем длину окружности по формуле: , r=h, значит L=2*pi * 6=12pi
ответ: 12pi
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Составьте уравнение окружности, проходящей через точки а(-2; 1), в(9; 3) и с(1; 7
Уравнение окружности с центром в точке (X₀; Y₀) и радиусом R имеет вид
(x - X₀)² + (y - Y₀)² = R²
A(-2;1): (-2-X₀)² + (1-Y₀)² = R² ⇔
1) X₀² + 4X₀ + Y₀² - 2Y₀ + 5 = R²
B(9;3) : (9-X₀)² + (3-Y₀)² = R² ⇔
2) X₀² - 18X₀ + Y₀² - 6Y₀ + 90 = R²
C(1;7) : (1-X₀)² + (7-Y₀)² = R² ⇔
3) X₀² - 2X₀ + Y₀² - 14Y₀ + 50 = R²
Получилась система из трёх уравнений с тремя неизвестными.
Из первого уравнения вычесть второе:
4) 22X₀ + 4Y₀ - 85 = 0
Из первого уравнения вычесть третье:
6X₀ + 12Y₀ - 45 = 0 | :3
5) 2X₀ + 4Y₀ - 15 = 0
Вычесть из четвертого уравнения пятое:
20X₀ - 70 = 0
X₀ = 3,5 Подставить в пятое уравнение:
2*3,5 + 4Y₀ - 15 = 0
4Y₀ = 8 ⇒ Y₀ = 2
Подставить X₀ = 3,5 и Y₀ = 2 в уравнение для точки A(-2; 1)
R² = (-2 - 3,5)² + (1 - 2)²
R² = (-5,5)² + 1 = 31,25
Уравнение окружности
(x - 3,5)² + (y - 2)² = 31,25