В любом треугольнике центр описанной окружности лежит на пересечении серединных перпендикуляров, проведённых к сторонам треугольника. По условию центр окружности лежит и на медиане, поэтому, эта медиана будет и серединным перпендикуляром. Получается, что медиана, проведённая к одной из сторон треугольника является высотой треугольника. А если медиана является высотой, то треугольник равнобедренный (признак равнобедренного треугольника). Исключением будет случай, если центр окружности - это основание медианы, то есть точка пересечения медианы со стороной треугольника. Тогда центр окружности лежит на стороне треугольника и треугольник получится прямоугольным.
vsbrelok
24.04.2023
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
Fateevsa9
24.04.2023
Острый угол между диагоналями прямоугольника равен φ. Найти угол между диагональю прямоугольника и его большей
Дано:
ABCD — прямоугольник,
AC ∩ BD=O,
∠AOD=φ.
Найти: ∠ACD.
Решение:
1) ∠DOC=180º-∠AOD=180º-φ (как смежные).
ugol mezhdu diagonalyami pryamougolnika raven
2) Треугольник COD — равнобедренный с основанием CD
Исключением будет случай, если центр окружности - это основание медианы, то есть точка пересечения медианы со стороной треугольника. Тогда центр окружности лежит на стороне треугольника и треугольник получится прямоугольным.