1) Периметр - линейная величина, значит отношение периметров подобных тр-ков равно отношению соответствующих сторон этих тр-ков: 7:5.
2) пусть меньшая сторона одного тр-ка равна х, а меньшая сторона второго тр-ка - х1. Тогда х:х1=7:5, тогда х1=(5х)/7. По условию: х+х1=36, значит х+((5х)/7)=36, (12х)/7=36, х=21 (см), а х1=(5*21)/7=15 (см).
3) В одном тр-ке стороны относятся как 3:7:8 и меньшая из них равна 21 см. Тогда 3k=21, k=7, где k- коэффициент пропорц-сти для этого тр-ка. Две другие стороны соответственно равны: 7*7=49 и 8*7=56 см. Это "больший" треугольник.
4) В "меньшем" тр-ке меньшая сторона равна 15 см (см. пункт 1), что равно 3t, где t- коэф-нт пропорциональности этого тр-ка. Получим, что t=5, тогда вторая сторона равна 7*5=35 см, а третья 8*5=40 см.
ОТВЕТ: 21, 49, 56 см и 15, 35, 40 см.
Поделитесь своими знаниями, ответьте на вопрос:
Дано: abca₁b₁c₁-правильная призма. aa₁c₁c-квадрат, к-середина bb₁, ac=12√3. найти угол между плоскостями акс и авс. желательно с рисунком, но если прямо крайне лень, то хотя бы понятное решение!
Ось Х - АВ
Ось У - перпендикулярно Х в сторону С
Ось Z - AA1
Уравнение плоскости АВС
z=0
Координаты точек
С(6√3;18;0)
К(12√3;0;6√3)
Уравнение плоскости АКС - проходит через начало координат
аx+by+cz=0
Подставляем координаты точек
6√3а+18b=0
12√3a+6√3c=0
Пусть с=1 тогда а= -1/2 b=√3/6
-x/2+√3y/6+z= 0
k=√(1/4+1/12+1)=2/√3
Косинус искомого угла равен
1/(2/√3)=√3/2
Угол равен 30 градусам