Косоногов Иосифовна
?>

Решите желательно с дано и рисунком радиус окружности, вписанной в прямоугольный треугольник, равен 2 см, а сумма катетов равна 17 см. найдите периметр треугольника и его площадь.

Геометрия

Ответы

Хохлова Иванович
Пусть расстояние от вершины одного острого угла до точки касания равно х
Тогда один катет равен
х+2
Второй
17-х-2
Гипотенуза равна сумме отрезков от острых углов треугольника до точек касания с окружностью по свойству касательных из одной точки к окружности.
х+ 17-х-2-2=13cм
По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов:
(17 -х)²+х²=13²
289-34х+х²+х²=169
2х²-34х +120=0
D = b² - 4ac = 196
х1=5 см
х2=12 см
Один катет равен 5, второй 12
Площадь равна половине произведения катетов и равна
5*12:2=30 см²

Проверка

5²+12²=169

169=169

√169=13
Ryadovboxing23

Доказательства в объяснении.

Объяснение:

1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а  вписанный угол равен половине градусной меры дуги, на которую он опирается.

Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.

2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС.   ∠АСВ = ∠КАВ (доказано выше).

По сумме внутренних углов треугольников АВС и КАВ имеем:

∠АВС = 180 - (∠АСВ + ∠ВАС)  

∠АКВ = 180 - (∠КАВ + ∠АВК)   =>

∠АВС = ∠АКВ.  =>  ∠АВК = ∠АКВ  =>

Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.  

3. Треугольники АСВ и КАВ подобны по  2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).

Площади подобных треугольников относятся как квадрат коэффициента подобия.

Sabc/Sabk = k² = АС²/АВ².

По теореме косинусов в тр-ке АВС найдем:

АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).  

Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>  

к² зависит только от угла α, то есть  

отношение площадей зависит только от величины угла АСВ.

Что и требовалось доказать.

Объяснение:

Bogataya Vladimir318

Обозначим радиус шара через х, тогда диаметр = 2х. объем шара = 4/3*пи*х^3 (если правильно помню, проверь). рисуй конус "в разрезе". проводи высоту. получится 2 прямоугольных треугольника, у которых внизу 1 угол прямой, 2 угол 60 градусов. высота = 2х, "нижний" катет треугольника равен радиусу основания конуса. обозначим его через r. r=2/корень(3) * х. площадь основания конуса = пи*r^2. его объем = h*sоснования*1/3 = 2х*пи*4/3*х^2 *1/3 = пи*8*х^3 / 9. объем конуса дели на объем шара, сокращай. должно получиться 2/3.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите желательно с дано и рисунком радиус окружности, вписанной в прямоугольный треугольник, равен 2 см, а сумма катетов равна 17 см. найдите периметр треугольника и его площадь.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Polina780
fedoseevgleb
yusovd291
alex13izmailov
uglichdeti
Svatela37
Илья_Ветклиники1655
ridyana504
lion13
nevasoundmsk36
lakeeva90
lebedevevgen
Mariya987
m-zolotukhina2
Воронина