Дано:
∆АМВ и ∆СМВ - прямоугольные.
ВМ - медиана (СМ = АМ)
МС - 3 см
∠А = ∠С
∠АВМ = 30°
Доказать:
∆АВМ = ∆СВМ.
Решение.
Т.к. ∠С = ∠А => ∆АВС - равнобедренный.
=> ВМ - является и медианой, и высотой, и биссектрисой.
=> ∠АВМ = ∠СВМ = 30° (так как ВМ является биссектрисой)
ЕСЛИ УГОЛ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА РАВНЯЕТСЯ 30°, ТО НАПРОТИВ ЛЕЖАЩИЙ КАТЕТ РАВЕН ПОЛОВИНЕ ГИПОТЕНУЗЫ.
МС = МА, по условию.(и так как ВМ - медиана)
=> АВ = ВС = 3 × 2 = 6 см.
Рассмотрим ∆АВМ и ∆СВМ:
АВ = ВС
∠АВМ = ∠СВМ
=> ∆АВМ = ∆СВМ, по гипотенузе и острому углу.
Ч.Т.Д.
S = 50 ед².
Объяснение:
Пусть стороны прямоугольного параллелепипеда, образующие его измерения, равны "a", "b" и "c". Тогда площади основания и двух боковых граней равны
a·b = 48 (1), a·c = 40 (2) и b·c = 30 (3).
Выразим сторону b из равенств (1) и (3) и приравняем полученное:
b = 48/a и b = 30/c => 48/a = 30/c => c = 30a/48 = (5/8)a.
Подставим это значение в (2):
a·(5/8)a = 40 => a² = 320/5 = 64 => a = 8 ед.
Тогда из (1) b = 48/8 = 6 ед. c = 30/8 = 5 ед. (из 2).
Найдем по Пифагору диагональ основания:
d = √(a²+b²) = √(64+36) = 10 ед.
Площадь диагонального сечения равна:
S = d·c = 10·5 = 50 ед².
Поделитесь своими знаниями, ответьте на вопрос:
Ав и ас касательные к окружности с центром о. в и с точки касания. известно, что угол аов = 35 градусам. найти угол вас?