Даны точки А(-10; 2), С(6; 4) - вершины треугольника и точка М(5; 2) - точка пересечения высот.
1) Находим уравнение стороны АС.
АС: (х + 10)/16 = (у - 2)/2.
Сократим знаменатели на 2: х + 10 = 8у - 16
Уравнение АС: у = (1/8)х + (13/4).
2) Определяем уравнение высоты из точки В через М.
к(ВМ) = -1/(кАС) = -1/(1/8) = -8.
ВМ: у = -8х + в. Подставим координаты точки М(5; 2).
2 = -8*5 + в, в = 2 + 40 = 42.
Уравнение ВМ: у = -8х + 42.
3) Определяем уравнение высоты из точки С через М.
СМ: (х -6)/-1 = (у - 4)/-2. Сократим знаменатели на -1.
2х - 12 = у - 4,
Уравнение СМ: у = 2х - 8.
4) Теперь можно определить уравнение стороны АВ как перпендикуляр к высоте СМ.
к(АВ) = -1/к(СМ) = -1/2.
Уравнение АВ: у = (-1/2)х + в. Подставим координаты точки А(-10; 2).
2 = (-1/2)*(-10) + в, в = 2 - 5 = -3.
Уравнение АВ: (-1/2)х - 3.
5) Находим координаты точки В как точки пересечения прямых АВ и ВМ: (-1/2)х - 3 = -8х + 42,
7,5х = 45, х =45/7,5 = 6, у = -8*6 + 42 = -6.
ответ: координаты точки В: (6; -6).
Поделитесь своими знаниями, ответьте на вопрос:
Один из двух углов, образованных при пересечении двух прямых, на 20° меньше другого. найдите эти углы.
80 и 100 градусов . Берем две прямые. Пересекающиеся под углом 90 гр. И делаем разницу в 20 градусов : 90-10=80. 90+10=100.