Два перпендикуляра к одной плоскости параллельны. Значит
АА₁║ВВ₁.
Две параллельные прямые задают плоскость, которая пересекает данную плоскость по прямой А₁В₁. Так как отрезок АВ лежит в плоскости (АВВ₁), то и точка D лежит на линии пересечения плоскостей.
Т.е. точки А₁, В₁ и D лежат на одной прямой.
∠ADA₁ = ∠BDB₁ как вертикальные,
∠AA₁D = ∠BB₁D = 90° по условию, значит
ΔAA₁D подобен ΔBB₁D по двум углам.
ΔAA₁D: ∠AA₁D = 90°, по теореме Пифагора
DA₁ = √(DA² - AA₁²) = √(25 - 9) = √16 = 4 см
B₁D : A₁D = BD : AD = BB₁ : AA₁ = 2 : 1
BB₁ : 3 = 2 : 1 ⇒ ВВ₁ = 6 см
BD : 5 = 2 : 1 ⇒ BD = 10 см
АВ = AD + DB = 5 + 10 = 15 см
Параллельный перенос задается формулами
\begin{gathered} < var > x'=x+a;\\ y'=y+b;\\ z'=z+c < /var > \end{gathered}
<var>x
′
=x+a;
y
′
=y+b;
z
′
=z+c</var>
Так как при параллельном переносе точка А(-2;3;5) переходит в точку А1(1;-1;2), то
\begin{gathered} < var > 1=-2+a;\\ -1=3+b;\\ 2=5+c < /var > \end{gathered}
<var>1=−2+a;
−1=3+b;
2=5+c</var>
\begin{gathered} < var > a=1+2;\\ b=-1-3;\\ c=2-5 < /var > \end{gathered}
<var>a=1+2;
b=−1−3;
c=2−5</var>
\begin{gathered} < var > a=3;\\ b=-4;\\ c=-3 < /var > \end{gathered}
<var>a=3;
b=−4;
c=−3</var>
Данный параллельный перенос задается формулами
\begin{gathered} < var > x'=x+3;\\ y'=y-4;\\ z'=z-3 < /var > \end{gathered}
<var>x
′
=x+3;
y
′
=y−4;
z
′
=z−3</var>
Поэтому точка В(-4;-3;1) перейдет в точку c координатами
\begin{gathered} < var > x'=-4+3;\\ y'=-3-4;\\ z'=1-3 < /var > \end{gathered}
<var>x
′
=−4+3;
y
′
=−3−4;
z
′
=1−3</var>
\begin{gathered} < var > x'=-1;\\ y'=-7;\\ z'=-2 < /var > \end{gathered}
<var>x
′
=−1;
y
′
=−7;
z
′
=−2</var>
т.е. В1(-1;-7;-2)
Поделитесь своими знаниями, ответьте на вопрос:
2стороны равнобедренного треугольника равны 10 см и 4 см. определите какая из них является боковой стороной. заранее )
две стороны по 4 и одна по 10 - так не может быть, поэтому 10 - боковая сторона, 4 - основание