разделим решение на 2 части: анализ и нахождение величин
1) анализ
обозначим боковые стороны и меньшее основание за x
длина той части высоты, которая ближе к меньшему основанию - м (далее - во)
длина той части высоты, которая ближе к большему основанию - б (далее - он)
пусть трапеция - abcd. bc - меньшее основание, аb и cd - боковые стороны.
проведём высоту bh, диагональ - ас. точка пересечения - о
треугольники овс и она - подобные (оба прямоугольные, есть вертикальные углы аон=вос)
тогда ан = вс* (он/во) = х* (б/м)
площадь трапеции: s = bh*(bc+ad)/2 = bh*(bc+ah) = 18*x*(1+б/м)
итак, осталось найти х.
поясню, почему требуется обозначения б и м. есть 2 решения (в зависимости от того, какие длины мы присвоим отрезкам он и во) . поэтому будут 2 значения б/м:
б/м = 10/8 или б/м = 8/10
2) нахождение величин
обозначим угол всн = t (дальше легче писать)
cos (t) = ah/ab = (x*(б/м)) /x = б/м.
sin (t) = вн/ав = 18/х
cos^2(t) + sin^2(t) = 1
(б/м) ^2 + 324/x^2 = 1
324/x^2 = 1 - (б/м) ^2
так как 324/x^2 > 0, то приходим, что б/м = 8/10. (т. е. второго решения больше нет) .
итого: 324/x^2 = 1 - (8/10)^2 = 0,36
x = 30
s = 18*x*(1+б/м) = 18*30*(1+ 8/10) = 972
трапеция авсд, высота вн пересекает диагональ ас в точке о, при этом во =10, он=8.; ав =вс=х по условию, значит треугольники аон и сов подобны по двум углам (так как угол вас =углу вса и углы при вершине о равны как вертикальные) из подобия треугольников следует пропорция вс/ан=во/он, т.е х/ан=10/8,значит ан= 4х/5 и всё нижнее основание ад= 4х/5+х+4х/5, т.е ад=13х/5. но из прямоугольного треугольника авн по теореме пифагора авв квадрате = ан в квадрате + вн в квадрате, т.е х в квадрате = (4х/5)в квадрате + 18 в квадрате. отсюда х=30. тогда верхнее основание вс=30,нижнее ад= 13х/5=78 и площадь трапеции равна полусумме оснований умножить на высоту, т.е (78+30)/2 и умножить на 18, получится 972.
ответ: 972
Поделитесь своими знаниями, ответьте на вопрос:
Вычислить косинумы внутренних двугранных углов тетраэдра, образованного плоскостями координат и плоскостью, проходящей через точки a(2; 1; 8), b(-1; 3; 4) и с(3; 0; 12)
Даны точки A(2;1;8),B(-1;3;4) и С(3;0;12).
Находим уравнение плоскости через эти точки.
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA
= 0
Подставим данные и упростим выражение:
x - 2 y - 1 z - 8
(-1) - 2 3 - 1 4 - 8
3 - 2 0 - 1 12 - 8
= 0
x - 2 y - 1 z - 8
-3 2 -4
1 -1 4
= 0
x - 2 2·4-(-4)·(-1) - y - 1 (-3)·4-(-4)·1 + z - 8 (-3)·(-1)-2·1 = 0
4 x - 2 + 8 y - 1 + 1 z - 8 = 0
4x + 8y + z - 24 = 0.
Переведём это уравнение в уравнение в "отрезках".
(x/(24/4)) + (y/(24/8) + (z/24) = 1.
(x/6) + (y/3) + (z/24) = 1.
Получили вершины тетраэдра:
А(6; 0; 0), В(0; 0; 0), С(0; 3; 0) и Д(0; 0; 24).
Находим длины перпендикуляров из начала координат (точка В) к отрезкам АС, АД и СД.
АС = √(3² + 6²) = √(9 + 36) = √45 = 3√5.
ВК = (3*6)/(3√5) = 6/√5.
АД = √6² + 24²) = √(36 + 576) = √612 = 6√17.
ВМ = (6*24)/(6√17) = 24/√17.
СД = √(3² + 24²) = √(9 + 576) = √585 = 3√65.
ВЕ = (3*24)/(3√65) = 24/√65.
Находим наклонные отрезки ДК, СМ и АЕ.
ДК = √(24² + ВК²) = √(576 + (36/5)) = √(2916/5).
СМ = √(3² + ВМ²) = √(9 + (576/17)) = √(729/17).
АЕ = √(6² + ВЕ²) = √(36 + (576/65)) = √(2916/65).
Теперь можно определить косинусы внутренних двугранных углов тетраэдра,образованного плоскостями координат и плоскостью,проходящей через точки A(2;1;8),B(-1;3;4) и С(3;0;12) .
Косинус угла ДКВ (наклона плоскости АВС к координатной плоскости ХОУ) равен: cos(ДКВ) = ВК/КД = (6/√5)/(√(2916/5)) = 6/√2916 = 1/9.
Косинус угла СМВ (наклона плоскости АВС к координатной плоскости ХОZ) равен: cos(СМВ) = ВМ/СМ = (24/√17)/(√(729/17)) = 6/√2916 = 8/9.
Косинус угла ВЕА (наклона плоскости АВС к координатной плоскости УОZ) равен: cos(ВЕА) = ВЕ/АЕ = (24/√65)/(√(2916/5)) = 24/√2916 = 4/9.