Объем пирамиды = V = S осн · H / 3
1) найдем H: так как sina = противолежащий катет / на гипотенузу
находим H = sina·L.
2) найти R описанной окружности основания..т.е 2h/3..R= cosa·L=2h/3 = h = (3 cos a · L)/2..
треугольника..a(квадрат)а(квадрат)/4 = h(квадрат)..a = (3 cos a ·L) / корень из 3...подставляем под формулу для вычисления площади треугольника = a ((квадрат) корень из 3 )/4 ..получаем S = 3 cos(квадрат) A · L(квадрат) · корень из 3 / и все деленное 4..теперь все подставляем в формулу V для объема..
V = 3 · Cos(квадрат) А · sin A · L (куб)· корень из 3 и все деленное на 4
Поделитесь своими знаниями, ответьте на вопрос:
Дан куб abcda1b1c1d1, ребро которого равно 10. найдите периметр и площадь сечения а1с1k1, если d1k=kd
Соединяем точки А₁, С₁ и К, так как они попарно лежат в одной грани.
А₁С₁ = 10√2 как диагональ квадрата.
ΔА₁D₁K: по теореме Пифагора
А₁К = √(A₁D₁² + D₁K²) = √(10² + 5²) = √125 = 5√5
ΔA₁D₁K = ΔC₁D₁K по двум катетам (A₁D₁ = C₁D₁ как ребра куба, D₁K - общий), значит А₁К = С₁К = 5√5
Рa₁c₁k = 10√2 + 5√5 + 5√5 = 10√2 + 10√5 = 10(√2 + √5).
КО - медиана и высота равнобедренного треугольника А₁С₁К.
По теореме Пифагора:
КО = √(А₁К² - А₁О²) = √(125 - (5√2)²) = √(125 - 50) = √75 = 5√3
Sa₁c₁k = 1/2 · A₁C₁ ·KO = 1/2 · 10√2 · 5√3 = 25√6